• Title/Summary/Keyword: friction forces

Search Result 492, Processing Time 0.022 seconds

Tribological characteristics of short fiber reinforced composites (단섬유 보강 복합재료의 트라이볼로지 특성)

  • 윤재륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1238-1245
    • /
    • 1988
  • Friction and wear characteristics of short fiber reinforced and particulate filled composites were investigated experimentally. Two kinds of fiber composites, chopped graphite fiber reinforced PAI(polyamide-imide) and glass fiber reinforced PAI, and a particulate composite, TiO$_{2}$ powder filled PAI, were selected for the friction and wear test since these are important engineering materials based on a new high temperature engineering plastic. All the specimens were cut into proper size for cylinder-on-plate type wear test. Frictional forces were measured by employing a load transducer and wear rates were calculated by measuring weight loss during wear test. The experimental results are reported in this paper and carefully discussed to explain the friction and wear behavior qualitatively. The frictional behavior is interpreted by considering four basic friction components which are believed to the genesis of friction and the wear behavior is explained by applying delamination theory of wear.

Shape-dependent Adhesion and Friction on Au Nanoparticles Probed with Atomic Force Microscopy

  • Yuk, Youngji;Hong, Jong Wook;Han, Sang Woo;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.141-141
    • /
    • 2013
  • Shape control of metal nanocrystals has broad applications, including catalysis, plasmonics, and sensing. It was found that controlling the atomic arrangement on metal nanocrystal surfaces affects many properties, including the electronic dipole or work function. Tuning the surface structure of exposed facets of metal nanocrystals was enabled by shape control. We investigated the effect of shape on nanomechanical properties, including friction and adhesion forces. Two nanoparticles systems, high-index {321} and low-index {100}, were used as model nanoparticle surfaces. Scanning force microscopy was used to probe nanoscale friction and adhesion. Because of the abundant presence of high-density atomic steps and kinks, high-index faceted nanoparticles have a higher surface energy than low-index faceted cubic nanoparticles. Due to this high surface energy, high-index faceted particles have shown stronger adhesion and higher friction than low-index nanoparticles. We discuss the results in light of the differences in surface energy as well as the effect of capping layers in the measurement.

  • PDF

Comparison of Friction and Wear Characteristics of Thin Film Coatings Using Tribotesters at Atmospheric/Vacuum Conditions (대기압/진공 조건의 트라이보 시험기를 이용한 박막 코팅의 마찰/마모 특성 비교)

  • Kim, Hae-Jin;Kim, Dae-Eun;Kim, Chang-Lae
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.389-395
    • /
    • 2019
  • In various industries, thin film coatings are used to improve friction and wear characteristics. Various types of tribotesters are used to evaluate the friction and wear characteristics of such thin film coatings. In this study, we fabricated a micro-tribotester and Tribo-scanning electron microscopy (SEM) to compare the friction and wear characteristics of copper (Cu) coatings under an atmospheric pressure and a vacuum condition, respectively. The reliability of the different types of tribotesters was evaluated by performing calibrations for the sensor to measure the friction forces and normal loads. Using the two different types of devices, the friction and wear tests are conducted at the same experimental conditions excluding environment conditions such as the atmospheric pressure and vacuum condition. The friction coefficient at the vacuum condition is lower than at the atmospheric pressure. This difference in friction characteristics is due to the fact that wear phenomena occur differently according to the atmospheric pressure and vacuum condition. At the atmospheric pressure, the abrasive wear is the main wear mechanism. At the vacuum condition, the adhesive wear is the main wear mechanism. The reason for the difference in the wear mechanism of the Cu coating at the atmospheric pressure and the vacuum condition is that the oxidation phenomenon, which does not appear at the vacuum condition, occurs at the atmospheric pressure; therefore, the characteristics of the Cu coating change accordingly.

Development of a Measuring Device for Coefficient of Friction between Connection Parts in Vehicle Head Lamps (자동차 헤드램프내 체결부품사이의 마찰계수 실험장치 개발)

  • Baek, Hong;Moon, Ji-Seung;Park, Sang-Shin;Park, Jong-Myeong
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.59-64
    • /
    • 2019
  • When slipping occurs between two materials, the coefficients of friction must be considered because these values determine the overall efficiency of the machine or slip characteristics. Therefore, it is important to find the coefficient of friction between two materials. This paper focuses on obtaining the coefficient of friction between an aiming bolt and a retainer located in the headlamps of a vehicle. This bolt supports the headlamp, and if the bolt is loosened by external vibration, the angle of the light will change and block the vision of pedestrians or other drivers. In order to study these situations, the coefficient of friction between aiming bolts and retainers needs to be measured. In addition, the coefficient of friction of materials used in the headlamp should be obtained. To determine these two factors, a new device is designed for two cases: surface-surface contact and surface-line contact. To increase reliability of the results, the device is designed using an air-bearing stage which uses compressed air as lubricant to eliminate the friction of the stage itself. Experiments were carried out by applying various vertical forces, and the results show that the coefficient of friction can be measured consistently. The procedure for designing the device and the results are discussed.

Motion of a Cylindrical Object due to Seabed Soil Friction (해저면 토양마찰력에 의한 원통형 물체의 운동)

  • 최경식;강신영;곽한우
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.19-28
    • /
    • 1992
  • The motion of a cylindrical object resting on shallow seabed due to wave forces and soil friction is studied. Given environmental conditions such as wave characteristics and seabed soil properties, the equations of motion are derived and the corresponding reponses of the cylinder in two dimensional plane, i.e., translational and rotational displacements, accelerations, are calculated. The motion is substantially restrained by the penetration of a cylinder into seabed and the parametric study focuses on finding out a minimum penetration depth which makes the cylinder motionless.

  • PDF

Frictional Contact Analysis of the Crack Surfaces Under the Compressive Loading (압축력으로 인한 균열표면의 마찰접촉 해석)

  • Kim, Bang-Won;Kim, Young-Kweon;Lee, Ki-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.91-97
    • /
    • 2001
  • When a body including a crack inside is subjected to the compressive forces, the crack is closed and sliding occurs on the crack surfaces. In this work, a subsurface crack subjected to a static compressive load is analyzed with the finite element method considering friction on the crack surface. The friction on the crack surface is assumed to follow the Coulomb friction law, and a numerical method based on the finite element method and iterative method is applied in this work. The result is compared with those of ANSYS and references.

  • PDF

Shear strength of connections between open and closed steel-concrete composite sandwich structures

  • Kim, Woo-Bum;Choi, Byong Jeong
    • Steel and Composite Structures
    • /
    • v.11 no.2
    • /
    • pp.169-181
    • /
    • 2011
  • The behavior of connections between open sandwich slabs and double steel skin composite walls in steel plate-concrete(SC) structure is investigated by a series of experimental programs to identify the roles of components in the transfer of forces. Such connections are supposed to transfer shear by the action of friction on the interface between the steel surface and the concrete surface, as well as the shear resistance of the bottom steel plate attached to the wall. Experimental observation showed that shear transfer in slabs subjected to shear in short spans is explained by direct force transfer via diagonal struts and indirect force transfer via truss actions. Shear resistance at the interface is enhanced by the shear capacity of the shear plate as well as friction caused by the compressive force along the wall plate. Shear friction resistance along the wall plate was deduced from experimental observation. Finally, the appropriate design strength of the connection is proposed for a practical design purpose.

Dynamic Stability of a Drum-Brake Pad Considering Rotary Inertia and Shear Deformation (회전광성과 전단변형을 고려한 드럼-브레이크 패드의 동적안정성)

  • 오부진;공용식;류봉조;이규섭;임경빈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.181-185
    • /
    • 2001
  • This paper deals with the dynamic stability of a disc brake pad taking into account of its shear deformation and rotary inertia. A brake pad can be modeled as a beam like model subjected to distributed friction forces and having two translational springs. The study of this model is intended to provide a fundamental understanding of dynamic stability of drum brake pad. Governing equations of motion are derived from extended Hamilton's principle and their corresponding numerical solutions are obtained by applying the finite element formulation. The critical distributed friction force and the instability types are investigated bt changing two translational spring constants, rotary inertia parameter and shear deformation parameter. Also, the changes of eigen-frequencies of a beam determining instability types are investigated for various combinations of two translational spring constants.

  • PDF

The Analysis of Ground Behavior on the Crossing Construction Under Railroad Using In-door Model Experiment (실내모형실험을 이용한 철도지하횡단공사에서의 지반 거동 분석)

  • 엄기영;정흥채;김지훈
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.540-545
    • /
    • 2001
  • When a testing body is being inserted to the ground by Front Jacking Method, the influence of friction forces around the body plays important role in the characteristics of whole ground behavior. In the study, the Front Jacking Method that most frequently used in Korea who applied with experimental way. And the characteristics of ground behavior that caused by the friction that acts to the upper slab was analysed for the basic data that can be utilized for real scale experiment.

  • PDF

Analysis of Piston Seal in High-Speed Pneumatic Cylinders (고속 공기압 실린더의 피스톤 실 특성 해석)

  • Zhang, Z.J.;Kim, D.T.;Han, S.S.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.99-104
    • /
    • 2010
  • Nonlinear seal friction in pneumatic cylinders can impede the performance of pneumatic systems designed for high precision positioning with favorable high speed actuation. The behaviour of an elastomeric piston seal in high speed pneumatic cylinders is analysed by nonlinear finite element analysis using ABAQUS. The contact pressures, stress and strain distributions and frictional forces of the piston seal are simulated with variation of interference fits, supply pressures, friction coefficients and piston rod velocities. The nonlinear finite element model of the piston seal is used to predict deformation of a seal, friction force and contact pressure distributions.

  • PDF