• Title/Summary/Keyword: friction cores

Search Result 13, Processing Time 0.022 seconds

A new proposed Friction Multi-layered Elastomeric Seismic Isolator (FMESI)

  • Mirali-Katouli, Gholamali;Abdollahzadeh, Gholamreza
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.407-416
    • /
    • 2021
  • Seismic isolation is one of the best-advanced methods for controlling seismic vibrations in buildings, bridges and nuclear facilities. A new Friction Multi-Layer Elastomeric Seismic Isolator (FMESI) has been modeled, analyzed and investigated by ABAQUS finite element analysis software and then, compared to real models. A number of friction cores have been used instead of the lead core therefore, some of the previous isolator problems have been almost resolved. Moreover, Studies show that the proposed isolator provides suitable initial stiffness and acceptable hysteresis behavior under different vertical and horizontal loading conditions and also internal stresses in different layers are acceptable. Also, as a result, the initial stiffness and overall area of the curves increase, as friction coefficients of the cores increase, although the frictional coefficients must be within a certain range.

Physical Properties and Friction Characteristics of Fault Cores in South Korea (단층핵의 물리적 특성과 마찰 특성의 상관관계 분석)

  • Moon, Seong-Woo;Yun, Hyun-Seok;Seo, Yong-Seok
    • Economic and Environmental Geology
    • /
    • v.53 no.1
    • /
    • pp.71-85
    • /
    • 2020
  • To understand behavior of fault cores in the field of geotechnical and geological engineering, we present an investigation of the physical properties (breccia and clay contents, unit weight, porosity, and water content) and friction characteristics (internal friction angle and cohesion) of fault cores, in granitic, sedimentary, and volcanic rocks in South Korea. The breccia contents in the fault cores are positively correlated with unit weight and negatively correlated with clay content, porosity, and water content. The inter-quartile ranges of internal friction angles and cohesion calculated from direct shear tests are 16.7-38.1° and 2.5-25.3 kPa, respectively. The influence of physical properties on the friction characteristics of the fault cores was analyzed and showed that in all three rock types the internal friction angles are positively correlated with breccia content and unit weight, and negatively correlated with clay content, porosity, and water content. In contrast, the cohesions of the fault cores are negatively correlated with breccia content and unit weight, and positively correlated with clay content, porosity, and water content.

A study on the determination of shear strength and the support design of pre-failed rock slope (일차파괴된 암반사면의 전단강도 및 보강설계법 고찰)

  • 조태진;김영호
    • Tunnel and Underground Space
    • /
    • v.5 no.2
    • /
    • pp.104-113
    • /
    • 1995
  • Shear strength of the discontinuity on which the pre-failure of rock slope was occurred during surface excavation was measured through the direct shear test using core samples obtained in-situ. Internal friction angle was increased as the roughness of discontinuity surface(JRC) was increased. Results of the tilt test using core samples of higher JRC also showed very similar trend as those of the direct shear test. When the samples replicated from natural cores were used int he tilt test, results of friction angles showed almost perfect continuation of the residual friction angles from the direct shear test. However, when the gouge material existed in the discontinuity the internal friction angle strongly depended upon the rate of filling thickness to the height of asperity irrespective of the JRC. Based on the results of both direct shear test and tilt test internal friction angle and cohesion of discontinuity, which reflect the in-situ conditions fo pre-sliding failure and also can be used for the optimum design of support system, were assessed. Two kinds of support measures which were expected to increase the stability of rock slope were considered; lowering of slope face angle and installation of rock cable. But, it was found that the first method might lead to more unstable conditions of rock slope when the cohesion of discontinuity plane was negligibly low and in that case the support systems of any kind which could exert actual resisting force were needed to ensure the permanent stability of rock slope.

  • PDF

Wet surface performance test of fin-tube heat exchangers with slit-wavy fin (물결형 슬릿핀이 장착된 핀-관 열교환기의 습표면 성능 실험)

  • Kim, N.H.;Kim, J.S.;Cho, J.P.;Yun, J.H.;Peck, J.H.;Lee, S.G.;Nam, S.B.;Kwon, H.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.153-162
    • /
    • 1997
  • In this study, the wet surface heat transfer coefficients and friction factors of the heat exchanger with slit-wavy fin were measured. Four sample cores of two or three row with fins of 12 fpi or 16 fpi were tested. Tests were conducted in a closed loop wind tunnel, where the heat exchanger was mounted at 45 degree inclination angle. The wet surface heat transfer coefficient was reduced following the procedure given in ARI 420-81. During the course, new definitions of the $\varepsilon$-NTU applicable to enthalpy driving system were introduced. The wet surface heat transfer coefficients were approximately equal to the dry surface values. However, the friction factors were approximately 120% to 170% higher than those of the dry surface. Both the heat transfer coefficient and the friction factor of the wet surface increased as the relative humidity increased, fin pitch decreased, and the number of row decreased, although the difference was not large.

  • PDF

Analysis of Joining Strength in Electromagnetic Joining of Metals to High Toughness Polymers (금속과 고분자 재료의 접합강도 해석)

  • Son, Hui-Sik;Kim, Nam-Hwan;Lee, Jong-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.3
    • /
    • pp.110-116
    • /
    • 1992
  • Electromgnetic joining of aluminum alloy tubes to high toughness polyurethane rubber cores is studied in order to estimate the joining strength and to analyze the effect of the process variables. The equation which can estimate the joining strength is proposed under considering the elastic recovery of the polyurethane core and the radial shrinkage of the core by pulling it axially. The obtained results are as follows : 1) The joining strength is mainly dependent on the magnitude of residual elastic strain of the polyurethane core. 2) The radial shrinkage (residual strain reduction) of the core during the axial pulling causes the joining strength to decrease severely. The equation for the reduced axial strength is proposed and it is found that the estimated values agree well with experimental results. 3) The magnitude of radial shrinkage could be reduced for the smaller value of ratio l/r. 4) The joining strength in metal/polymer joining increases as the friction coefficient increases. But its effect of friction coefficient is insignificant in comparison with the case of metal/metal joining.

  • PDF

Characteristics of Rhenium-Iridium coating thin film on tungsten carbide by multi-target sputter

  • Cheon, Min-Woo;Kim, Tae-Gon;Park, Yong-Pil
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.328-331
    • /
    • 2012
  • With the recent development of super-precision optical instruments, camera modules for devices, such as portable terminals and digital camera lenses, are increasingly being used. Since an optical lens is usually produced by high-temperature compression molding methods using tungsten carbide (WC) alloy molding cores, it is necessary to develop and study technology for super-precision processing of molding cores and coatings for the core surface. In this study, Rhenium-Iridium (Re-Ir) thin films were deposited onto a WC molding core using a sputtering system. The Re-Ir thin films were prepared by a multi-target sputtering technique, using iridium, rhenium, and chromium as the sources. Argon and nitrogen were introduced through an inlet into the chamber to be the plasma and reactive gases. The Re-Ir thin films were prepared with targets having a composition ratio of 30 : 70, and the Re-Ir thin films were formed with a 240 nm thickness. Re-Ir thin films on WC molding core were analyzed by scanning electron microscope (SEM), atomic force microscope (AFM), and Ra (the arithmetical average surface roughness). Also, adhesion strength and coefficient friction of Re-Ir thin films were examined. The Re-Ir coating technique has received intensive attention in the coating processes field because of promising features, such as hardness, high elasticity, abrasion resistance and mechanical stability that result from the process. Re-Ir coating technique has also been applied widely in industrial and biomedical applications. In this study, WC molding core was manufactured, using high-performance precision machining and the effects of the Re-Ir coating on the surface roughness.

Engineering Geological Implications of Fault Zone in Deep Drill Cores: Microtextural Characterization of Pseudotachylite and Seismic Activity (시추코어 단층대에서의 지질공학적 의미: 슈도타킬라이트의 미세조직의 특징과 지진활동)

  • Choo, Chang-Oh;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.489-500
    • /
    • 2017
  • It is not rare that pseudotachylite, dark colored rock with glassy texture, is recognizable in deep core samples drilled up to 900 m from the surface. Pseudotachylite with widths varying few to 20 cm is sharply contacted or interlayered with the host rocks composed of Jurassic granite and Precambrian amphibolite gneiss, showing moderately ductile deformation or slight folding. Pseudotachylite occurring at varying depths in the deep drill core are slightly different in texture and thickness. There is evidence of fault gouge at shallower depths, although brittle deformation is pervasive in most drill cores and pseudotachylite is identified at random depth intervals. Under scanning electron microscope (SEM), it is evident that the surface of pseudotachylite is characterized by a smooth, glassy matrix even at micrometer scale and there is little residual fragments in the glass matrix except microcrystals of quartz with embayed shape. Such textural evidence strongly supports the idea that the pseudotachylite was generated through the friction melting related to strong seismic events. Based on X-ray diffraction (XRD) quantitative analysis, it consists of primary minerals such as quartz, feldspars, biotite, amphibole and secondary minerals including clay minerals, calcite and glassy materials. Such mineralogical features of fractured materials including pseudotachylite indicate that the fractured zone might form at low temperatures possibly below $300^{\circ}C$, which implies that the seismic activity related to the formation of pseudotachylite took place at shallow depths, possibly at most 10 km. Identification and characterization of pseudotachylite provide insight into a better understanding of the paleoseismic activity of deep grounds and fundamental information on the stability of candidate disposal sites for high-level radioactive waste.

Experiments on Interfacial Properties Between Ground and Shotcrete Lining (지반과 숏크리트 라이닝의 인터페이스 특성에 관한 실험적 연구)

  • Chang, Soo-Ho;Lee, Seok-Won;Bae, Gyu-Jin;Choi, Soon-Wook;Park, Hae-Geun;Kim, Jae-Kwon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.407-414
    • /
    • 2004
  • Interfacial properties between rock mass and shotcrete play a significant role in the transmission of loads from the ground to shotcrete. These properties have a major effect on the behaviours of rock mass and shotcrete. They, however, have merely been assumed in most of numerical analyses, and little care has been taken in identifying them. This paper aimed to identify interfacial properties including cohesion, tension, friction angle, shear stiffness, and normal stiffness, through direct shear tests as well as interface normal compression tests for shotcrete/rock cores obtained from a tunnel sidewall. Mechanical properties such as compression strength and elastic modulus were also measured to compare them with the time-dependent variation of interfacial properties. Based on experiments, interfacial properties between rock and shotcrete showed a significant time-dependent variation similar to those of its mechanical properties. In addition, the time-dependent behaviours of interfacial properties can be well regressed through exponential and logarithmic functions of time.

  • PDF

A Numerical Study on the Flow and Heat Transfer Characteristics of Aluminum Pyramidal Truss Core Sandwich (알루미늄 피라미드 트러스 심재 샌드위치의 열유동 특성에 관한 수치해석 연구)

  • Kang, Jong-Su;Kim, Sang-Woo;Lim, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.638-644
    • /
    • 2019
  • In this study, the fluid flow and heat transfer characteristics within sandwich panels are investigated using computational fluid dynamics. Within the sandwich panels having periodic cellular cores, air can freely move inside the core section so that the structure is able to perform multi-functional roles such as simultaneous load bearing and heat dissipation. Thus, there needs to examine the thermal and flow analysis with respect to design variables and various conditions. In this regard, ANSYS Fluent was utilized to explore the flow and heat transfer within the pyramidal truss sandwich structures by varying the truss angle and inlet velocity. Without the entry effect in the first unitcell, the constant rate of pressure and the constant rate of Nusselt number was observed. As a result, it was demonstrated that Nusselt number increases and friction factor decreases as the inlet velocity increases. Moreover, the rate of Nusselt number and friction factor was appreciable in the range of V=1-5m/s due to the transition from laminar to turbulent flow. Regarding the effect of design variable, the variation of truss angle did not significantly influence the characteristics.

Experiments on Interfacial Properties Between Ground and Shotcrete Lining (지반과 숏크리트 라이닝의 인터페이스 특성에 관한 실험적 연구)

  • 장수호;이석원;배규진;최순욱;박해균;김재권
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.79-86
    • /
    • 2004
  • Interfacial properties between rock mass and shotcrete play a significant role in the transmission of loads from the ground to shotcrete. These properties have a major effect on the behaviours of rock mass and shotcrete. They, however, have merely been considered in most of numerical analyses, and little care has been taken in identifying them. This paper aimed to identify interfacial properties including cohesion, tension, friction angle, shear stiffness, and normal stiffness, through direct shear tests as well as interface normal compression tests for shotcrete/rock cores obtained from a tunnel sidewall. Mechanical properties such as compressive strength and elastic modulus were also measured to compare them with the time-dependent variation of interfacial properties. Based on the experiments, interfacial properties between rock and shotcrete showed a significant time-dependent variation similar to those of its mechanical properties. In addition, the time-dependent behaviours of interfacial properties could be well regressed through exponential and logarithmic functions of time.