• 제목/요약/키워드: friction compensator

검색결과 53건 처리시간 0.024초

유압 비례 위치제어시스템의 적응 마찰력 보상기 설계에 관한 연구 (A Study on the Adaptive Friction Compensator Design of a Hydraulic Proportional Position Control System)

  • 이명호;박형배
    • 한국공작기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.77-83
    • /
    • 2003
  • This paper deals with a position control problem of a hydraulic proportional position control system using a nonlinear friction compensation control. As nonlinear friction, stiction and coulomb friction forces are considered and modeled as deadzone and external disturbance respectively. In order to compensate this nonlinearities, we designed the controller which is the adaptive friction compensator using discrete time Model Reference Adaptive Control method in this paper. Digital Signal Processing board is employed for data acquisition and manipulation. The experimental results show that response is slow and steady-state error cannot be compensated properly without friction compensation but this compensator is effective to obtain fast response and good steady-state response.

모터 제어 정밀도 향상을 위한 정지 마찰력 보상 (Static Friction Compensation for Enhancing Motor Control Precision)

  • 류정래;도태용
    • 제어로봇시스템학회논문지
    • /
    • 제20권2호
    • /
    • pp.180-185
    • /
    • 2014
  • DC motor is a representative electric motor commonly utilized in various motion control fields. However, DC motor-based motion control systems suffer from degradation of position precision due to nonlinear static friction. In order to enhance control precision, friction model-based compensators have been introduced in previous researches, where friction models are identified and counter inputs are added to control inputs for cancelling out the identified friction forces. In this paper, a static friction compensator is proposed without use of a friction model. The proposed compensation algorithm utilizes internal state manipulation to generate compensation pulses, and related parameters are easily tuned experimentally. The proposed friction compensator is applied to a DC motor-based motion control system, and results are presented in comparison with those without a friction compensator.

Pre-Sliding Friction Control Using the Sliding Mode Controller with Hysteresis Friction Compensator

  • Choi, Jeong Ju;Kim, Jong Shik;Han, Seong Ik
    • Journal of Mechanical Science and Technology
    • /
    • 제18권10호
    • /
    • pp.1755-1762
    • /
    • 2004
  • Friction phenomenon can be described as two parts, which are the pre-sliding and sliding regions. In the motion of the sliding region, the friction force depends on the velocity of the system and consists of the Coulomb, stick-slip, Streibeck effect and viscous frictions. The friction force in the pre-sliding region, which occurs before the breakaway, depends on the position of the system. In the case of the motion of the friction in the sliding region, the LuGre model describes well the friction phenomenon and is used widely to identify the friction model, but the motion of the friction in the pre-sliding such as hysteresis phenomenon cannot be expressed well. In this paper, a modified friction model for the motion of the friction in the pre-sliding region is suggested which can consider the hysteresis phenomenon as the Preisach model. In order to show the effectiveness of the proposed friction model, the sliding mode controller (SMC) with hysteresis friction compensator is synthesized for a ball-screw servo system.

이중 속도 제어 구조에 의한 서보 제어기의 비선형 마찰 토크 보상 (A Nonlinear Friction Torque Compensation of Servo System with Double Speed Controller)

  • 이동희;최철;김철우
    • 전력전자학회논문지
    • /
    • 제9권6호
    • /
    • pp.612-619
    • /
    • 2004
  • 회전형 전동기와 볼스크류 및 타이밍 벨트를 이용한 서보 시스템은 NC, 가공기, 로봇 및 공장 자동화를 포함하여 산업 시스템 전반에 널리 사용되고 있다. 하지만, 동력의 전달에서 발생하는 비선형적인 마찰 및 댐핑현상은 제어 시스템 전체의 성능을 감소시키고, 특히 저속 정역 운전에서 그 영향이 크게 나타난다. 본 논문에서는 서보 제어시스템에서 발생하는 비선형적인 마찰 토크의 보상을 위해 가중치를 가지는 이중 제어 구조를 적용하였다. 본 논문에서 제안된 이중 제어 구조는 서보 제어 시스템에서 널리 사용되는 PI 속도 제어기 내부에 비선형적인 마찰 토크의 영향을 보상하는 내부 제어기를 가지는 구조이다. 특히, 내부의 제어기는 마찰 토크에 의한 시스템의 속도오차에 대하여 가중치를 가지는 구조로 설계되어 있고, 제어기의 이득은 외부 속도 제어기의 이득에 대하여 비례적으로 적용되므로, 안정성이 매우 높고 구조가 매우 간단하다. 본 논문에서 제안된 이중 제어 구조에 의한 비선형 마찰 토크 보상 방식은 시뮬레이션 및 실험을 통하여 그 성능을 검증한다.

Nonlinear Friction Compensator Design for Mechatronics Servo Systems Using Neural Network

  • Chung, Dae-won;Nobuhiro Kyra;Hiromu Gotanda
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권2호
    • /
    • pp.111-116
    • /
    • 2001
  • A neural network compensator for stick-slip friction phenomena in meashartonics servo systems is practically proposed to supplement the traditionally available position and velocity control loops for precise motion control. The neural network compensa-tor plays the role of canceling the effect of nonlinear slipping friction force. It works robustly and effectively in a real control system. This enables the mechatronics servo systems to provide more precise control in the digital computer. It was confirmed that the con-trol accuracy is improved near zero velocity and points of changing the moving direction through numerical simulation. However, asymptotic property on the steady state error of the normal operation points is guaranteed by the integral term of traditional velocity loop controller.

  • PDF

유압 비례 위치제어 시스템의 마찰력 보상기 설계 (Friction Compensator Design of a Hydraulic Proportional Position Control System)

  • 이명호
    • 한국생산제조학회지
    • /
    • 제7권4호
    • /
    • pp.130-135
    • /
    • 1998
  • This paper deals with a position control problem of a hydraulic proportional position control system using a friction compensation control. There are many nonlinearities in hydraulic systems. With only proportional controller, response is slow and steady-state error cannot be compensated properly. Controller designed in this paper achieves fast transient response through the velocity and acceleration feedback and good steady-state response through the friction compensator. A/D and D/A board is employed for data acquisition and manipulation. The experimental results are compared with computer simulation results using Matlab.

  • PDF

비선헝 마찰 보상기를 이용한 램프추종 서보제어기에 관한 연구 (A study on the ramp tracking servo controller using nonlinear friction compensator)

  • 최승환;임동진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.426-428
    • /
    • 1998
  • In this paper, a ramp tracking controller design method is proposed for the systems with nonlinear frictions. The objective is to design a controller which is capable of tracking a ramp reference input without steady state error. The controller is composed of a linear controller, integrators for error compensation, and a friction compensator. The compensator estimates the parameters of friction model. The friction parameters are estimated using two different method. Simulation and experimental results show that the proposed method is effective.

  • PDF

선형모터 정밀 위치제어를 위한 비선형 동적 마찰력 보상기를 갖는 적응 제어기 설계 (A Design of Adaptive Controller with Nonlinear Dynamic Friction Compensator for Precise Position Control of Linear Motor System)

  • 이진우;조현철;이영진;이권순
    • 전기학회논문지
    • /
    • 제56권5호
    • /
    • pp.944-957
    • /
    • 2007
  • In general mechanical servo systems, friction deteriorates the performance of controllers by its nonlinear characteristics. Especially, friction phenomenon causes steady-state tracking errors and limit cycles in position and velocity control systems, even though gains of controllers are tuned well in linear system model. Even if sensor is used higher accuracy level, it is difficult to improve tracking performance of the position to the same level with a general control method such as PID type. Therefore, many friction models were proposed and compensation methods have been researched actively. In this paper, we consider that the variation of mover's mass is various by loading and unloading. The normal force variation occurs by it and other parameters. Therefore, the proposed control system is composed of main position controller and a friction compensator. A parameter estimator for a nonlinear friction model is designed by adaptive control law and adaptive backstopping control method.

LuGre Model-Based Neural Network Friction Compensator in a Linear Motor Stage

  • Horng, Rong-Hwang;Lin, Li-Ren;Lee, An-Chen
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권2호
    • /
    • pp.18-24
    • /
    • 2006
  • This paper proposes a LuGre Model-Based Neural Network (MBNN) friction compensation algorithm for a linear motor stage. For matching the friction phenomena in both the motion-start region and the motion-reverse region, the LuGre dynamic model is employed into the proposed compensation algorithm. After training of the model-based neural network is completed, the estimated friction for compensation is obtained. From the obtained result we find that the new structure gains advantage over the non-friction compensation system on the performance of the compensator in both regions. The proposed compensator is evaluated and compared experimentally with an uncompensated system on a microcomputer controlled linear motor tracking system in the final section of the paper. The experimental results show the improvement on the maximum velocity error and the root mean square tracking error in the motion-start region ranges from 34% to 53% and from 53% to 75% respectively, and in the motion-reverse region from 48% to 65% and from 79% to 90% respectively.

추정된 쿨롱 마찰을 보상한 볼-스크류 시스템의 위치제어 (Position Control of Ball-Screw Systems with Compensation of Estimated Coulomb Friction)

  • 김한메;최정주;이영진;김종식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.893-898
    • /
    • 2003
  • Coulomb friction is an important factor for precise position tracking control systems. The control systems with friction causes the steady state error because of being sensitive to the change of system condition and highly nonlinear characteristics. To overcome these problems, we use an estimation scheme of Coulomb friction to experiment for it's compensating. The estimated factor for Coulomb friction is used as a feed-forward compensator to improve the tracking performance of ball-screw systems. The tracking performance was improved by compensating the estimated friction torque in the feed-forward term. And, the sliding mode control which is derived from the Lyapunov stability theorem is applied for robust stability and reducing chattering. The experimental results show that the sliding mode controller with adaptive friction compensator has a good tracking performance compared with the friction uncompensated controller.

  • PDF