• 제목/요약/키워드: freundlich model

검색결과 310건 처리시간 0.03초

제주 스코리아로부터 합성한 제올라이트계 고정화 흡착제에 의한 Cu와 Cs 이온의 흡착 특성 (Characteristics of Cu and Cs Ions adsorbed on an immobilized Adsorbent including Zeolite Synthesized from Jeju Scoria)

  • 이창한;감상규;이민규
    • 한국환경과학회지
    • /
    • 제28권1호
    • /
    • pp.55-64
    • /
    • 2019
  • The adsorption properties of $Cs^+$ and $Cu^{2+}$ ions were evaluated by using a polysulfone scoria zeolite (PSf-SZ) composite with synthetic zeolite synthesized from Jeju volcanic rocks (scoria). In order to investigate the adsorption properties, various parameters, such as pH, contact time, reaction rate, concentration, and temperature in aqueous solutions, were evaluated by tests carried out in batch experiments. The adsorption capacities of $Cs^+$ and $Cu^{2+}$ ions increased between pH 2 but achieved equilibrium at pH 4 and above. The adsorption rate increased rapidly up to the initial 24 h, after which it plateaued ; the adsorption rate then sustained at equilibrium from 48 h. The adsorption kinetics of $Cs^+$ and $Cu^{2+}$ ions were described better by the pseudo-second-order kinetic model than the pseudo-first-order kinetic model. The Langmuir model fitted the adsorption isotherm data better than the Freundlich model. The maximum adsorption capacities of $Cs^+$ and $Cu^{2+}$ ions obtained from the Langmuir model were 53.8 mg/g and 84.7 mg/g, respectively. The calculated thermodynamic parameters showed that the adsorption of $Cs^+$ and $Cu^{2+}$ ions on PSf-SZ was feasible, spontaneous and endothermic reaction.

베타글루칸과 구연산의 교차결합 바이오 폴리머 흡착제를 이용한 수용액내 납과 구리의 흡착 (Adsorption of Pb and Cu from Aqueous Solution by β-Glucan Crosslinked with Citric Acid)

  • 전한결;김경웅
    • 자원환경지질
    • /
    • 제55권4호
    • /
    • pp.367-376
    • /
    • 2022
  • 본 연구에서는 바이오폴리머의 일종인 베타글루칸을 구연산과 교차결합하여 수용액 내에서 불용성인 흡착제(crosslinked β-glucan, CBG)롤 제조하였으며, FTIR과 SEM-EDX를 이용하여 CBG의 특성평가와 납과 구리 흡착특성을 파악하기 위한 pH에 따른 흡착량 변화, 흡착속도, 등온흡착 실험을 진행하였다. 특성평가 결과, 베타글루칸과 구연산의 교차결합 메커니즘을 파악하였으며, CBG 표면에서의 납과 구리 흡착을 확인하였다. 수용액 pH에 의한 흡착량 변화 실험에서는 pH 6에서 가장 높은 납과 구리 흡착량을 보였으며, pH 3이하에서는 급격한 감소를 보였다. 또한 흡착속도 실험 결과 CBG에 의한 납과 구리 흡착은 유사 2차 반응속도식과 내부확산식을 따르는 것을 확인하였고, 등온흡착 실험에서는 Langmuir식을 따라 납과 구리 최대흡착량이 각각 59.70, 23.44 mg/g임을 확인하였다. 본 연구에서는 구연산을 이용하여 베타글루칸을 수용액 내 흡착제로 이용하는 방법을 제시하고자 하였으며, 연구결과에 따라 CBG는향후 친환경적인 중금속 흡착제로서의 적용이 가능할 것으로 판단된다.

석탄광산배수슬러지를 이용한 액상상태의 비소제거 흡착특성 및 반응속도에 관한 연구 (A Study of Kinetics and Adsorption Characteristics for Removal of Arsenate by Using Coal Mine Drainage Sludge in Aqueous Phase)

  • 이세반;최명찬;장민;문덕현;조윤철;김지형
    • 한국환경과학회지
    • /
    • 제20권2호
    • /
    • pp.241-249
    • /
    • 2011
  • In this research, equilibrium of adsorption and kinetics of As(V) removal were investigated. The coal mine drainage sludge(CMDS) was used as adsorbent. To find out the physical and chemical properties of CMDS, XRD (X-ray diffraction), XRF (X-ray fluorescence spectrometer) analysis were carried out. The CMDS was consist of 70% of goethite and 30% of calcite. From the results, an adsorption mechanism of As(V) with CMDS was dominated by iron oxides. Langmuir adsorption isotherm model was fitted well more than Freundlich isotherm adsorption model. Adsorption capacities of CMDS 1 was not different with CMDS 2 on aspect of amounts of arsenic adsorbed. The maximum adsorption amount of two CMDS were respectively 40.816, 39.682 mg/g. However, the kinetic of two CMDS was different. The kinetic was followed pseudo second order model than pseudo first order model. Concentrations of arsenic in all segments of the polymer in CMDS 2 does not have a constant value, but the rate was greater than the value of CMDS 1. Therefore, CMDS 2, which is containing polymer, is more effective for adsorbent to remove As(V).

국산(國産) Zeolite를 이용(利用)한 중금속(重金屬) 폐수(廢水) 처리공정(處理工程) 연구(硏究) - Batch Test를 중심(中心)으로 - (Heavy Metal Wastewater Treatment (Batch Mode) by Domestic Zeolite)

  • 신응배
    • 대한토목학회논문집
    • /
    • 제2권1호
    • /
    • pp.63-68
    • /
    • 1982
  • 본(本) 연구(硏究)는 국산천연(國産天然) 제오라이트를 이용한 중금속(重金屬) 산업폐수(產業廢水) 처리공정(處理工程)을 개발(開發)할 목적(目的)으로 수행(遂行)되었으며 본 논문에서는 1차적으로 알카리 처리된 제오라이트를 이용하여 Batch Test를 통한 기초실험(基礎實驗) 결과(結果)를 수록하였다. 제오라이트에 의한 중금속 흡착(吸着)공정에 미치는 pH의 영향(影響), 흡착 Isotherm Model 결정, 흡착속도 및 온도(溫度)의 영향을 중점적으로 평가분석(評價分析)하였으며 그 결과 최적(最適) pH는 4~5이상, 카드미움 흡착은 BET Model이 적합하며, 반응시간(反應時間)은 10분 이상이 소요됨을 알았으며 또한 온도가 증가하면 비례하여 흡착능(吸着能)도 증가하므로서 단순한 물리흡착(物理吸着)만이 아닌 화학흡착(化學吸着)도 병행하여 일어나고 있다고 판단된다. 본 연구 결과로 판단컨대, 국산 천연 제오라이트를 이용한 중금속 폐수처리는 그 전망이 밝으며 앞으로 Column Test를 통하여 합성(合成)폐수는 물론 실제폐수의 처리도(處理度)를 실험하므로서 처리공정설계 조건을 도출할 수 없으며 이와 같은 공정의 개발로서 우리나라의 중금속 폐수처리에 획기적인 공헌이 기대된다.

  • PDF

쌀겨 바이오차와 분말 활성탄을 이용한 메틸렌 블루와 휴믹산 제거 효율 비교 (Comparative Evaluation of Methylene Blue and Humic Acids Removal Efficiency Using Rice Husk Derived Biochars and Powdered Activated Carbon)

  • 이주원;정은주;이정민;이용구;전강민
    • 한국물환경학회지
    • /
    • 제37권6호
    • /
    • pp.483-492
    • /
    • 2021
  • This study evaluated the removal efficiencies of methylene blue (MB) and humic acids (HA) using a rice husk (RH) biochar and powdered activated carbon (PAC). The pseudo-second-order model better presented the adsorption of MB and HA onto a RH biochar than the pseudo-first-order model. Furthermore, better description of the adsorption behavior of MB and HA by the Langmuir isotherm model (R2 of the RH biochar: MB = 0.986 and HA = 0.984; R2 of PAC: MB = 0.997 and HA = 0.989) than the Freundlich isotherm model (R2 of the RH biochar: MB = 0.955 and HA = 0.965; R2 of PAC: MB = 0.982 and HA = 0.973) supports the assumption that monolayer adsorption played key roles in the removal of MB and HA using the RH biochar and PAC. Batch experiments were performed on the effects of dosage, temperature, and pH. For all experiments, PAC showed higher efficiencies than RH biochar and MB adsorption efficiencies were higher than those of HA. Adsorption efficiencies increased with increasing amounts of adsorbents and temperature. As the pH increased, adsorption efficiencies of MB were increased while adsorption efficiencies of HA were decreased.

Thermally-activated Mactra veneriformis shells for phosphate removal in aqueous solution

  • Yeon-Jin, Lee;Jae-In, Lee;Chang-Gu, Lee;Seong-Jik, Park
    • Membrane and Water Treatment
    • /
    • 제14권1호
    • /
    • pp.1-10
    • /
    • 2023
  • This study explored the feasibility of calcium-rich food waste, Mactra veneriformis shells (MVS), as an adsorbent for phosphate removal, and its removal efficiency was enhanced by the thermal activation process. The CaCO3 in MVS was converted to CaO by thermal activation (>800 ℃), which is more favorable for adsorbing phosphate. Thermal activation did not noticeably influence the specific surface area of MVS. The MVS thermally activated at 800 ℃ (MVS-800), showed the highest phosphate adsorption capacity, was used for further adsorption experiments, including kinetics, equilibrium isotherms, and thermodynamic adsorption. The effects of environmental factors, including pH, competing anions, and adsorbent dosage, were also studied. Phosphate adsorption by MVS-800 reached equilibrium within 48h, and the kinetic adsorption data were well explained by the pseudo-first-order model. The Langmuir model was a better fit for phosphate adsorption by MVS-800 than the Freundlich model, and the maximum adsorption capacity of MVS-800 obtained via the Langmuir model was 188.86 mg/g. Phosphate adsorption is an endothermic and involuntary process. As the pH increased, the phosphate adsorption decreased, and a sharp decrease was observed between pH 7 and 9. The presence of anions had a negative impact on phosphate removal, and their impact followed the decreasing order CO32- > SO42- > NO3- > Cl-. The increase in adsorbent dosage increased phosphate removal percentage, and 6.67 g/L of MVS-800 dose achieved 99.9% of phosphate removal. It can be concluded that the thermally treated MVS-800 can be used as an effective adsorbent for removing phosphate.

미세플라스틱 필름의 프로시미돈과 3,5-다이클로로아닐린 흡착 특성 (Sorption Characteristics of Procymidone and 3,5-Dichloroaniline on Microplastic Films)

  • 양지원;이연준;조은혜
    • 한국환경농학회지
    • /
    • 제42권3호
    • /
    • pp.184-192
    • /
    • 2023
  • Microplastics are generated by the breakdown of plastic wastes in agricultural soil and residual pesticides in agricultural soil can adsorb on microplastics. In this study, the sorption characteristics of procymidone (PCM) and one of its metabolites, 3,5-dichloroaniline (DCA), on low-density polyethylene (LDPE) and polyvinyl chloride (PVC) microplastics were investigated. The sorption and desorption tests were carried out for 72 h using LDPE or PVC microplastic films to study the sorption isotherms of PCM and DCA and kinetics for sorption and desorption of PCM. The results show that the sorption data of PCM and DCA were better described by the Freundlich isotherm model (R2=0.7568-0.9915) than the Langmuir isotherm model (R2=0.0545-0.5889). The sorption potential of PVC for both PCM and DCA was greater than that of LDPE. The sorption data of PCM on PVC and LDPE were fitted better to the pseudo-second-order kinetic model than the pseudo-first-order kinetic model. The PCM sorption on LDPE was about three times faster than that on PVC. Both microplastic films released the sorbed PCM back to water, and more PCM was released from PVC than LDPE, but the desorption rate was faster with LDPE than PVC. Overall, the results show that different microplastics have different sorption characteristics for different chemicals. Also, the sorbed chemicals can be released back to environment suggesting the potential of contaminant spread by microplastics. Thus, the management practices of microplastics in agricultural soil need to consider their interaction with the chemical contaminants in soil.

Optimization of uranium biosorption in solutions by Sargassum boveanum using RSM method

  • Hashemi, Nooshin;Dabbagh, Reza;Noroozi, Mostafa;Baradaran, Sama
    • Advances in environmental research
    • /
    • 제9권1호
    • /
    • pp.65-84
    • /
    • 2020
  • The potential use of Sargassum boveanum algae for the removal of uranium from aqueous solution has been studied by varying three independent parameters (pH, initial uranium ion concentration, S. boveanum dosage) using a central composite design (CCD) under response surface methodology (RSM). Batch mode experiments were performed in 20 experimental runs to determine the maximum metal adsorption capacity. In CCD design, the quantitative relationship between different levels of these parameters and heavy metal uptake (q) were used to work out the optimized levels of these parameters. The analysis of variance (ANOVA) of the proposed quadratic model revealed that this model was highly significant (R2 = 0.9940). The best set required 2.81 as initial pH(on the base of design of experiments method), 1.01 g/L S. boveanum and 418.92 mg/L uranium ion concentration within 180 min of contact time to show an optimum uranium uptake of 255 mg/g biomass. The biosorption process was also evaluated by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models represented that the experimental data fitted to the Langmuir isotherm model of a suitable degree and showed the maximum uptake capacity of 500 mg/g. FTIR and scanning electron microscopy were used to characterize the biosorbent and implied that the functional groups (carboxyl, sulfate, carbonyl and amine) were responsible for the biosorption of uranium from aqueous solution. In conclusion, the present study showed that S. boveanum could be a promising biosorbent for the removal of uranium pollutants from aqueous solutions.

고정층 흡착탑에서 석탄비산재로부터 합성한 Zeolite의 VOCs 흡착 해석 (Adsorption Analysis of VOCs of Zeolite Synthesized by Coal Fly Ash in a Fixed-bed Adsorber)

  • 김성수;이창한;박상욱
    • Korean Chemical Engineering Research
    • /
    • 제48권6호
    • /
    • pp.784-790
    • /
    • 2010
  • 고정층 반응기에서 비산재로부터 합성한 제올라이트와 4종류의 활성탄을 사용하여 질소 기류에서 아세톤, 벤젠, 톨루엔, 에틸벤젠 증기의 파과곡선을 측정하였다. 흡착실험은 101.3 kPa, $40^{\circ}C$에서 혼합 가스의 유량 $70cm^3/min$, 흡착제의 공급량 5 g, 그리고 VOCs 증기의 농도는 포화조의 온도를 $30^{\circ}C$로 하여 행하였다. 실험으로부터 얻은 파과곡선의 비선형해석으로부터 VOCs의 흡착과 흡착제의 비활성화를 동시에 고려한 비활성모델의 흡착속도상수와 비활성속도상수를 구하여 문헌의 다른 흡착등온모델과 비교하였다. 검토한 모델 중 비활성모델이 실험결과와 가장 일치하였고 다음으로 Freundlich, DRK 모델 순으로 높은 상관관계를 나타내었다. 또한 파과곡선으로부터 구한 흡착제의 흡착용량은 VOC의 끓는점이 증가할수록 감소하였으며, 증기압이 증가할수록 증가하였다.

소나무(Pinus densiflora) 목질을 이용한 수용액 중의 Cu(II) 흡착 (Adsorption of Cu(II) from Aqueous Solutions Using Pine (Pinus densiflora) Wood)

  • 김하나;박세근;양경민;김영관
    • 산업기술연구
    • /
    • 제27권A호
    • /
    • pp.195-202
    • /
    • 2007
  • Milled Korean pine (Pinus densiflora) wood was used to evaluate its adsorption capacity of Cu(II) ions from aqueous solution by running a series of batch experiments. Prior to the tests, the milled woods were pretreated with 1N NaOH, 1N $HNO_3$, and distilled water, respectively, to examine the effect of pretreatment. Within the tested pH range between 3 and 6, copper adsorption efficiency of NaOH-treated wood(96~99%) was superior to the $HNO_3$-treated wood(19~31%) and distilled water-treated wood(18~35%). The efficiency of copper removal by wood enhanced with increasing solution pH and reached a maximum copper ion uptake at pH 5~6. Adsorption behavior of copper onto both raw and $HNO_3$-treated woods was mainly attributed to interaction with carboxylic acid group. For NaOH-treated wood, carboxylate ion produced by hydrolysis or saponification was a major functional group responsible for Cu sorption. NaOH treatment of wood changed the ester and carboxylic acid groups into carboxylate group, whereas $HNO_3$ treatment did not affect the production of functional groups which could bind copper. A pseudo second-order kinetic model fitted well for the sorption of copper ion onto NaOH-treated wood. A batch isotherm test using NaOH-treated wood showed that equilibrium sorption data were better represented by the Langmuir model than the Freundlich model.

  • PDF