• Title/Summary/Keyword: freundlich isotherm

Search Result 420, Processing Time 0.026 seconds

Effect of Chemical Structures of Congo Red and Benzopurpurine 4B on the Dyeing Property and Lightfastness of Cotton Fabric (Congo Red와 Benzopurpurine 4B의 화학구조가 면직물의 염색성 및 광퇴색성에 미치는 영향)

  • 이영희;박준명;김경환
    • Textile Coloration and Finishing
    • /
    • v.2 no.1
    • /
    • pp.8-13
    • /
    • 1990
  • The fading of dyed material by light has long been subject of investigation, yet surprisingly little is known of the fundamental photochemical reactions, because of mainly the complex nature of dye-fibre system. The effect of the chemical structure of dye on lightfastness has been mostly studied when there is substituents on the place satisfied Hammett rule. Therefore, in this investigation the effectiveness of chemical structures of Congo Red and Benzopurpurine 4B unsatisfied Hammett rule on dyeing property and lightfastness of cotton was studied. The results obtained from this study were as follows; 1. Highly polar solvents showed hypsochromic shift. 2. Adsorption isotherm curves of the two dyes were Freundlich type. And Congo Red showed good dyeing property in comparision with Benzopurpurine 4B. 3. The type of the FR curve of the two dyes was first-ordr curve. And the CF curves of the two dyes showed normal fading state during irradiation. 4. During irradiation, the Hue was changed on the part of yellowish. The Value was increasing and the Chroma was decreasing. 5. Benzopurpurine 4B showed good lightfastness in comparision with Congo Red.

  • PDF

Adsorption of phosphate in water on a novel calcium hydroxide-coated dairy manure-derived biochar

  • Choi, Yong-Keun;Jang, Hyun Min;Kan, Eunsung;Wallace, Anna Rose;Sun, Wenjie
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.434-442
    • /
    • 2019
  • The present study investigated a novel calcium hydroxide-coated dairy manure-derived biochar (Ca-BC) for adsorption of phosphate from water and dairy wastewater. The Ca-BC showed much higher adsorption of phosphate than that of dairy manure-derived biochar. The Ca-BC possessed mainly the calcium hydroxide and various functional groups resulting in high reactivity between phosphate and calcium hydroxide in the Ca-BC. The adsorption of phosphate onto Ca-BC followed pseudo-second order kinetic and Freundlich isotherm models indicating chemisorptive interaction occurred on energetically heterogeneous surface of Ca-BC. The maximum adsorption capacity of the Ca-BC was higher than those of iron oxide and zinc oxide-coated biochars, but lower than those of CaO- and MgO-coated biochars. However, the Ca-BC showed high reactivity per surface area for adsorption of phosphate indicating importance of surface functionalization of biochar. On the other hand, the adsorption of phosphate in dairy wastewater on Ca-BC was lower than that in water owing to competition between other anions in wastewater and phosphate. Overall, the Ca-BC would be a low cost and effective adsorbent for recovery of phosphate from water and wastewater.

Adsorption of copper ions from aqueous solution using surface modified pine bark media (표면개질된 소나무 수피를 이용한 수용액의 구리이온 흡착)

  • Park, Se-Keun;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.2
    • /
    • pp.131-140
    • /
    • 2019
  • This study used a packed column reactor and a horizontal flow mesh reactor to examine the removal of copper ions from aqueous solutions using pine bark, a natural adsorbent prepared from Korean red pine (Pinus densiflora). Both equilibrium and nonequilibrium adsorption experiments were conducted on copper ion concentrations of 10mg/L, and the removals of copper ions at equilibrium were close to 95%. Adsorption of copper ions could be well described by both the Langmuir and Freundlich adsorption isotherms. The bark was treated with nitric acid to enhance efficiency of copper removal, and sorption capacity was improved by about 48% at equilibrium; mechanisms such as ion exchange and chelation may have been involved in the sorption process. A pseudo second-order kinetic model described the kinetic behavior of the copper ion adsorption onto the bark. Regeneration with nitric acid resulted in extended use of spent bark in the packed column. The horizontal flow mesh reactor allowed approximately 80% removal efficiency, demonstrating its operational flexibility and the potential for its practical use as a bark filter reactor.

Simultaneous extraction of organic and inorganic compounds using molecularly/ion imprinted polymer

  • Yelin Lee;Hyeyoung Jung;Soomi Park;Sunyoung Bae
    • Analytical Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.295-305
    • /
    • 2024
  • 5-Hydroxymethyl-2-furaldehyde (5-HMF) is considered one of the main quality indexes of various food products. Its metabolism in humans can potentially lead to carcinogenic compounds. Metallic ions such as Zn, Mg, Mn, and Fe have been reported to enhance 5-HMF formation. Recently, studies on adsorbents that can extract specific organic and inorganic substances with one adsorbent have been conducted. However, simultaneous analysis of organic and inorganic materials typically requires distinct pre-treatment and analytical methods, which increase a lot of labor and cost. In this study, hybrid imprinted polymer (HIP) by mixing 5-HMF imprinted polymer (FIP) and zinc ion imprinted polymer (ZIIP) were generated to extract two analytes, Zn ion and 5-HMF, simultaneously. Physicochemical characterization of HIP was conducted by Fourier-transform infrared spectroscopy, scanning electron microscopy, and sorption tests. Extraction conditions including adsorbent mixing ratio, adsorbate mixing range, and equilibrium time were optimized. Freundlich adsorption model was as the best-fitting isotherm model to elucidate the adsorption mechanism. Affinity of Zn ion and 5-HMF on HIP was superior to non-HIP. In conclusion, HIP showed reasonable feasibility that could be used as an adsorbent to be used for simultaneous extraction of organic and inorganic compounds present in the sample.

Study on the Adsorption of Antibiotics Trimethoprim in Aqueous Solution by Activated Carbon Prepared from Waste Citrus Peel Using Box-Behnken Design (박스-벤켄 설계법을 이용한 폐감귤박 활성탄에 의한 수용액 중의 항생제 Trimethoprim의 흡착 연구)

  • Lee, Min-Gyu;Kam, Sang-Kyu
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.568-576
    • /
    • 2018
  • In order to investigate the adsorption characteristics of the antibiotics trimethoprim (TMP) by activated carbon (WCAC) prepared from waste citrus peel, the effects of operating parameters on the TMP adsorption were investigated by using a response surface methodology (RSM). Batch experiments were carried out according to a four-factor Box-Behnken experimental design with four input parameters : concentration ($X_1$: 50-150 mg/L), pH ($X_2$: 4-10), temperature ($X_3$: 293-323 K), adsorbent dose ($X_4$: 0.05-0.15 g). The experimental data were fitted to a second-order polynomial equation by the multiple regression analysis and examined using statistical methods. The significance of the independent variables and their interactions was assessed by ANOVA and t-test statistical techniques. Statistical results showed that concentration of TMP was the most effective parameter in comparison with others. The adsorption process can be well described by the pseudo-second order kinetic model. The experimental data of isotherm followed the Langmuir isotherm model. The maximum adsorption amount of TMP by WCAC calculated from the Langmuir isotherm model was 144.9 mg/g at 293 K.

Evaluation of Adsorption Characteristics of the Media for Biofilter Design (바이오필터설계를 위한 바이오필터 담체의 흡착 특성)

  • Lee, Eun-Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.994-1001
    • /
    • 2008
  • Freundlich isothermal adsorption parameters, applicable to such biofilter-model as process-lumping model(Lim's model), for sterilized granular activated carbon(GAC), sterilized compost and sterilized equal volume mixture of GAC and compost were obtained and were compared each other, assuming that adsorbents are enclosed by water layer, in order to construct robust process-lumping biofilter model effective for wide-range of hydrophilic volatile organic compounds(VOC). In this investigation 0.04, 0.08, 0.12, 0.16, 0.2, 0.4, 0.8 and 1.0ml of ethanol were added to three kinds of adsorbent-media and were placed at $30^{\circ}{\cdots}$ under the wet condition of the media, which was the same as biofilter operating condition, until the adsorption reached the condition of equilibrium before each adsorbed amount of ethanol was obtained. Then adsorption capacity parameters(K) and adsorption exponents of Freundlich adsorption isotherm equation, which simulates the adsorbed amount of ethanol equilibrated with the ethanol concentration of the condensed water in the pore of the media, were constructed for sterilized granular activated carbon(GAC), sterilized compost and sterilized equal volume mixture of GAC and compost as (0.7566 and $5.070{\times}10^{-7}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.7566}$), (0.8827 and $1.000{\times}10^{-8}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.8827}$) and (0.5688 and $5.243{\times}10^{-6}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.5688}$), respectively. These Freundlich isothermal adsorption parameters were applicable to the adsorption characteristics of biofilter media enclosed with bio-layer. The order of magnitude of the ratio of ethanol-air/water partition coefficient and toluene-air/water partition coefficient was almost consistent to that of ethanol-adsorbed amounts in this experiment with compost and in the investigation of Delhomenie et al. on toluene-adsorption to wet compost.

Sorption and Ion Exchange Characteristics of Chabazite: Competition of Cs with Other Cations (차바자이트의 흡착 및 이온 교환 특성: Cs 및 다른 양이온과의 경쟁)

  • Baek, Woohyeon;Ha, Suhyeon;Hong, Sumin;Kim, Seonah;Kim, Yeongkyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.59-71
    • /
    • 2016
  • To investigate the sorption characteristics of Cs, which is one of the major isotopes of nuclear waste, on natural zeolite chabazite, XRD, EPMA, EC, pH, and ICP analysis were performed to obtain the informations on chemical composition, cation exchange capacity, sorption kinetics and isotherm of chabazite as well as competitive adsorption with other cations ($Li^+$, $Na^+$, $K^+$, $Rb^+$, $Sr^{2+}$). The chabazite used in this experiment has chemical composition of $Ca_{1.15}Na_{0.99}K_{1.20}Mg_{0.01}Ba_{0.16}Al_{4.79}Si_{7.21}O_{24}$ and its Si/Al ratio and cation exchange capacity (CEC) were 1.50 and 238.1 meq/100 g, respectively. Using the adsorption data at different times and concentrations, pseudo-second order and Freundlich isotherm equation were the most adequate ones for kinetic and isotherm models, indicating that there are multi sorption layers with more than two layers, and the sorption capacity was estimated by the derived constant from those equations. We also observed that equivalent molar fractions of Cs exchanged in chabazite were different depending on the ionic species from competitive ion exchange experiment. The selectivity sequence of Cs in chabazite with other cations in solution was in the order of $Na^+$, $Li^+$, $Sr^{2+}$, $K^+$ and $Rb^+$ which seems to be related to the hydrated diameters of those caions. When the exchange equilibrium relationship of Cs with other cations were plotted by Kielland plot, $Sr^{2+}$ showed the highest selectivity followed by $Na^+$, $Li^+$, $K^+$, $Rb^+$ and Cs showed positive values with all cations. Equilibrium constants from Kielland plot, which can explain thermodynamics and reaction kinetics for ionic exchange condition, suggest that chabazite has a higher preference for Cs in pores when it exists with $Sr^{2+}$ in solution, which is supposed to be due to the different hydration diameters of cations. Our rsults show that the high selectivity of Cs on chabazite can be used for the selective exchange of Cs in the water contaminated by radioactive nuclei.

Removal of I by Adsorption with AgX (Ag-impregnated X Zeolite) from High-Radioactive Seawater Waste (AgX (Ag-함침 X 제올라이트)에 의한 고방사성해수폐액으로부터 요오드(I)의 흡착 제거)

  • Lee, Eil-Hee;Lee, Keun-Young;Kim, Kwang-Wook;Kim, Hyung-Ju;Kim, Ik-Soo;Chung, Dong-Yong;Moon, Jei-Kwon;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.3
    • /
    • pp.223-234
    • /
    • 2016
  • This study aimed to the adsorption-removal of high- radioactive iodide (I) contained in the initially generated high-radioactive seawater waste (HSW), with the use of AgX (Ag-impregnated X zeolite). Adsorption of I by AgX (hereafter denoted as AgX-I adsorption) was increased by increasing the Ag-impregnated concentration in AgX, and its concentration was suitable at about 30 wt%. Because of AgCl precipitation by chloride ions contained in seawater waste, the leaching yields of Ag from AgX (Ag-impregnated concentration : about 30~35 wt%) was less than those in distilled water (< 1 mg/L). AgX-I adsorption was above 99% in the initial iodide concentration ($C_i$) of 0.01~10 mg/L at m/V (ratio of weight of adsorbent to solution volume)=2.5 g/L. This shows that efficient removal of I is possible. AgX-I adsorption was found to be more effective in distilled water than in seawater waste, and the influence of solution temperature was insignificant. Ag-I adsorption was better described by a Freundlich isotherm rather than a Langmuir isotherm. AgX-I adsorption kinetics can be expressed by a pseudo-second order rate equation. The adsorption rate constants ($k_2$) decreased by increasing $C_i$, and conversely increased by increasing the ratio of m/V and the solution temperature. This time, the activation energy of AgX-I adsorption was about 6.3 kJ/mol. This suggests that AgX-I adsorption is dominated by physical adsorption with weaker bonds. The evaluation of thermodynamic parameters (a negative Gibbs free energy and a positive Enthalpy) indicates that AgX-I adsorption is a spontaneous reaction (forward reaction), and an endothermic reaction indicating that higher temperatures are favored.

Adsorptive Removal of Radionuclide Cs+ in Water using Acid Active Clay (산활성 점토를 이용한 수중의 방사성 핵종 Cs+ 흡착 제거)

  • Lee, Jae Sung;Kim, Su Jin;Kim, Ye Eun;Kim, Seong Yun;Kim, Eun;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.2
    • /
    • pp.78-85
    • /
    • 2022
  • Natural white clay was treated with 6 M of H2SO4 and heated at 80℃ for 6 h under mechanical stirring and the resulting acid active clay was used as an adsorbent for the removal of Cs+ in water. The physicochemical changes of natural white clay and acid active clay were observed by X-ray Fluorescence Spectrometry (XRF), BET Surface Area Analyser and Energy Dispersive X-line Spectrometer (EDX). While activating natural white clay with acid, the part of Al2O3, CaO, MgO, SO3 and Fe2O3 was dissolved firstly from the crystal lattice, which bring about the increase in the specific surface area and the pore volume as well as active sites. The specific surface area and the pore volume of acid active clay were roughly twice as high compared with natural white clay. The adsorption of Cs+ on acid active clay was increased rapidly within 1 min and reached equilibrium at 60 min. At 25 mg L- of Cs+ concentration, 96.88% of adsorption capacity was accomplished by acid active clay. The adsorption data of Cs+ were fitted to the adsorption isotherm and kinetic models. It was found that Langmuir isotherm was described well to the adsorption behavior of Cs+ on acid active clay rather than Freundlich isotherm. For adsorption Cs+ on acid active clay, the Langmuir isotherm coefficients, Q, was found to be 10.52 mg g-1. In acid active clay/water system, the pseudo-second-order kinetic model was more suitable for adsorption of Cs+ than the pseudo-first-order kinetic model owing to the higher correlation coefficient R2 and the more proximity value of the experimental value qe,exp and the calculated value qe,cal. The overall results of study showed that acid active clay could be used as an efficient adsorbent for the removal of Cs+ from water.

Competitive Adsorption of Two Basic Dyes RB5 and GB4 on a Local Clay (점토에 대한 2개 염기성 염료 RB5와 GB4의 경쟁 흡착)

  • Elaziouti, A.;Derriche, Z.;Bouberka, Z.;Laouedj, N.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.1
    • /
    • pp.110-114
    • /
    • 2010
  • The equilibrium of adsorption of basics dyes RB 5 and BG 4 from a single dyes in the mixtures on the sodium-exchanged clay of the Maghnia (Algeria) was studied. The maximum adsorption capacities of BR5 and BG4 in single dyes were 465.13 and 469.90 mg/g respectively. In the simultaneous adsorption of BR5 and BG4 from mixture solutions, three different initials concentrations ratios R (R=$C_{(BR5)}/C_{(BG4)}$) were tested: 2.5/1, 1/1 and 1/2.5 using ADMI method. The isotherms adsorptions of dyes from the mixtures are characteristics of competition phenomenon. A very strong interaction between BR5 and BG4 for the active sites of adsorption of surface of clay is obtained for R = 1/1. The ratio R' (R'=$Qe_{(mixture)}/Qe_{(single)}$) of the adsorption capacity of BR5 and BG4 in the mixture were reduced by factor of 0.86, 0.74 and 0.84 for the initials concentrations ratios R (R=$C_{(BR5)}/C_{(BG4)}$) of 2.5/1, 1/1 and 1/2.5 respectively. The variation of the ratio of the adsorption capacity R‘ of BR5 and BG4 in the mixture solutions with initial concentration ratios R indicates that BR5 dye is slightly favourable in the competition adsorption than BG4. Langmuir and Freundlich models fit very well with adsorption behaviour of single dyes as well as the dyes in mixture solutions.