• Title/Summary/Keyword: freundlich

Search Result 630, Processing Time 0.023 seconds

Studies on the Adsorption of Coloring Food Additives (식품(食品) 착색제(着色劑)의 흡착(吸着)에 관(關)한 연구(硏究))

  • Park, Hong-Koo
    • Applied Biological Chemistry
    • /
    • v.30 no.3
    • /
    • pp.201-209
    • /
    • 1987
  • Solutions of food colorants were tested with insoluble drugs (kaolin, active carbon, talc, natural aluminum silicate) for their adsorption phenomena in purified water, gastric and intestinal fluid test solutions, respectively. The adsorption isotherms of kaolin with Red 2 in purified water, and active carbon with Red 2, 3, 40 in the three media, with Yellow 4 in purified water, gastric fluid, with Yellow 5 in intestinal fluid and natural aluminum silicate with Red 3 in purified water, intestinal fluid, with Yellow 4, 5 in purified water followed the Freundlich equation, and those of talc with Red 2, 3, Yellow 5 in the three media, with Red 40 in purified water, gastric fluid, with Yellow 4 in intestinal fluid fitted the Langmuir equation. With decrease of the alcohol content of aqueous solutions, the adsorption of coloring food additives is increased, but it decreased in high temperature. Also the activation energy of adsorption of coloring food additives by active carbon was determined.

  • PDF

Cadmium Adsorption by Natural Zeolite (천연(天然) Zeolite에 의(依)한 Cadmium의 흡착(吸着))

  • Kim, Young-Kyung;Lee, Jyung-Jae;Choi, Jyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.5 no.2
    • /
    • pp.101-105
    • /
    • 1986
  • An adsorption and desorption experiment was conducted to utilize natural zeolite as cadmium adsorbent in wastewater. Adsorption of cadmium by natural zeolite was conformed to Freundlich's adsorption equation and natural zeolite was found to be effective adsorbent. The higher the cadmium concentration of solution, the more the adsorption amount of cadmium was and the adsorption was in the order of $Ca-<Nontreated-<H-{\leqq}Al-<Nazeolite$. Ion selectivity of natural zeolite in mixed solution increased in the order of Cd$NaCl<CaCl_2<AlCl_3<HCl$.

  • PDF

Adsorption and Leaching Characteristics of the Insecticide Imidacloprid in Paddy Soils (살충제 Imidacloprid의 논토양 중 흡착 및 용탈 특성)

  • Ihm, Yang-Bin;Kyung, Kee-Sung;Kim, Chan-Sub;Lee, Hee-Dong;Ryu, Gab-Hee;Lee, Jae-Koo
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.1
    • /
    • pp.58-63
    • /
    • 2006
  • In order to elucidate the adsorption and leaching characteristics of the insecticide imidacloprid in two types of paddy soils near Suwon, this experiment was carried out with $[^{14}C]$imidacloprid as a radiotracer. In an adsorption study conducted using $[^{14}C]$imidacloprid in 2 test soils, the adsorption coefficient was higher in soil A $(K_f\;2.6)$ than that in soil B $(K_f\;1.7)$. As calculated from Freundlich constant, distribution coefficients and half lives in soils, GUS indices showed low leachabilities of imidacloprid treated on the paddy soils into the groundwater. The amount of imidacloprid leached from the soil columns during the 4 weeks of leaching was less than 2% of the originally treated $^{14}C$. In the leaching test the amounts of $^{14}C$ activities distributed in the soil layer of 0-10 cm were more than 80% of the originally tented $^{14}C$ and those in rice plants were less than 3% of the originally treated $^{14}C$, suggesting that imidacloprid has very low teachability and bioavailability.

Adsorption Kinetic and Thermodynamic Studies of Tricyclazole on Granular Activated Carbon (입상 활성탄에 대한 트리사이크라졸의 흡착동력학 및 열역학적 연구)

  • Lee, Jong-Jib;Cho, Jung-Ho;Kim, H.T.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.9
    • /
    • pp.623-629
    • /
    • 2011
  • The adsorption characteristics of tricyclazole by granular activated carbon were experimently investigated in the batch adsorption. Kinetic studies of adsorption of tricyclazole were carried out at 298, 308 and 318 K, using aqueous solutions with 250, 500 and 1,000 mg/L initial concentration of tricyclazole. It was established that the adsorption equilibrium of tricyclazole on granular activated carbon was successfully fitted by Freundlich isotherm equation at 298 K. The pseudo first order and pseudo second order models were used to evaluate the kinetic data and the pseudo second order kinetic model was the best with good correlation. Values of the rate constant ($k_2$) have been calculated as 0.1076, 0.0531, and 0.0309 g/mg h at 250, 500 and 1,000 mg/L initial concentration of tricyclazole, respectively. Thermodynamic parameter such as activation energy, standard enthalpy, standard entropy and standard free energy were evaluated. The positive value for enthalpy, -66.43 kJ/mol indicated that adsorption interaction of tricyclazole on activated carbon was an exothermic process. The estimated values for standard free energy were -5.08~-8.10 kJ/mol over activated carbon at 200 mg/L, indicated toward a exothermic process.

Effect of Immobilization Method in the Biosorption and Desorption of Lead by Algae, Chlorella pyrenoidosa (Chlorella pyrenoidosa에 의한 납 흡.탈착시 고정화 방법의 영향)

  • Shin, Taek-Soo;Lim, Byung-Seo;Lee, Sang-Woo;Rhu, Kwon-Gul;Jeong, Seon-Ki;Kim, Kwang-Yul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.8
    • /
    • pp.663-672
    • /
    • 2009
  • In this studies, the adsorption test using Chlorella pyrenoidosa was conducted to examine the effect of Pb adsorption according to various immobilized methods such as Ca-alginate, K-carrageenan, and Polyacrylamide. From the results, the duration to need to reach adsorption equilibrium was delayed according to the immobilization. And, the higher adsorption capacity of immobilized Chlorella pyrenoidosa was represented in the higher concentration of Pb, the smaller amount of immobilizing agent, and the higher pH of solution. The maximum adsorption capacity of Pb was shown in the adsorption test using Chlorella pyrenoidosa immobilized with Ca-alginate even though it was sensitive pH. The adsorption results properly represented with Freundlich isotherm equations. And, pseudo second-order chemisorption kinetic rate equation was applicable to all the biosorption data over the entire time range. The FT-IR analysis showed that the mechanism involved in biosorption of Pb by Chlorella pyrenoidosa was mainly attributed to Pb binding of carbo-acid and amide group. Adsorbed Pb on immobilized Chlorella prenoidosa was easily desorbed in the higher concentration of desorbents(NTA, HCl, EDTA, $H_2SO_4,\;Na_2CO_3$). Among the several desorbents, NTA showed the maximum desoption capacities of Pb from Chlorella pyrenoidosa immobilized with Ca-alginate and K-carrageenan and EDTA was the most effective in Chlorella pyrenoidosa immobilized with polyacrylamide. The desoprtion efficiency in the optimum condition was 90.0, 83.0, and 80.0%, respectively.

Leaching potential of butachlor, ethoprophos, iprobenfos, isoprothiolane and procymidone in soils as affected by adsorption characteristics (Butachlor, ethoprophos, iprobenfos, isoprothiolane 및 procymidone의 토양흡착성에 따른 용탈 잠재성 평가)

  • Kim, Chan-Sub;Lee, Byung-Moo;Ihm, Yang-Bin;Choi, Ju-Hyeon
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.4
    • /
    • pp.309-319
    • /
    • 2002
  • Soil adsorption study was carried out to define the mobility of pesticides or to evaluate leaching potential in soils. Five pesticides including ethoprophos, procymidone, iprobenfos, isoprothiolane, and butachlor were subjected to optimized adsorption experiment protocol for three types of cultivation soils. Freundlich adsorption coefficients (K) were ranged $0.35{\sim}0.95$ for ethoprophos, $0.98{\sim}2.2$ for iprobenfos, $1.2{\sim}4.3$ for procymidone, $1.5{\sim}3.5$ for isoprothiolane and $7.9{\sim}19$ for butachlor in three soils. Based on Koc values, ethoprophos was classified as mobile, iprobenfos, isoprothiolane and procymidone as moderately mobile and butachlor as slightly mobile. Two evaluation methods, Groundwater Ubiquity Score (GUS) index and standard indices of soil-chemical adsorption and biodegradation, were used for the estimation of pesticide leaching potential. Leachability of isoprothiolane and iprobenfos were evaluated as moderate, ethoprophos as a little potential, while butachlor and procymidone showed very low leaching potential. The leaching potential of pesticides was essentially determined on the basis of intrinsic properties of the pesticides and environmental properties. Among the soil properties, organic matter gave a great influence on the leachability of soils. Therefore, leachabilities of pesticides were expected less in loam with relatively higher organic matter than clay loam with lower organic matter.

Adsorption of nitrate from contaminated sea water with activated dredged sediment (오염해수로부터 질산염의 제거를 위한 전처리 퇴적물의 흡착특성)

  • Song Young-Chae;Woo Jung-Hui;Jung Eun-Hye;Go Sung-Jung;Kim Dong-Geun
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.589-593
    • /
    • 2005
  • A laboratory study on the adsorption of nitrate in polluted coastal water using various materials including several types of dredged sediments(ST) and yellow c1ays(YC), which are activated by heat(HT), bioleaching for heavy metal removal(BL) and neutralization(NR) was performed. The equilibrium time of the adsorption for the sediment bioleached and treated by heat(BL-HT-ST) was only 17min which was faster than the sediment bioleached, neutralized and treated by heat(BL-NR-HT-S) (25min) or the sediment treated by the bioleaching process(BL -ST)(27min), but longer equilibrium times for yellow c1ay(YC) or heat treated yellow day(HT- YC) were required. The adsorption processes of nitrate in sea water for tested material could be described by Freundlich isotherm, but were significantly affected by surface characteristics of the materials. The adsorption capacities for raw sediment and heat treated sediment were 2.12 and 2.19mg NO3-N/g, respectively, which were higher than others, indicating that the sediment activated by heat could be used as a material for the improvement of nearshore water quality.

Physicochemical Adsorption Characteristics of MTBE and Cadmium on Clay Minerals (점토광물에 대한 MTBE와 카드뮴의 물리화학적 흡착 특성)

  • Lim, Nam-Ho;Seo, Hyung-Joon;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.231-239
    • /
    • 2005
  • This study was performed to investigate adsorption characteristics of MTBE and Cd depending upon types of clay minerals md their physicochemical properties. The adsorption characteristics were examined by batch adsorption test on various experimental parameters such as adsorption time, ratio of solution to soil, concentration of contaminants, content of organic matter, pH, and zeta potential. The adsorption efficiency of MTBE or Cd for three types of clays decreased in response to the increase of the ratio of solution to soil whereas their adsorbed amounts increased. MTBE was greatly adsorbed in the decreasing order of vermiculite, bentonite, and CTAB-bentonite while Cd was adsorbed in the decreasing order of bentonite, vermiculite, and CTA-bentonite. An equilibrium isotherm for MTBE was well fitted to Freundlich plotting whereas that for Cd was closely corresponded to Langmuir isotherm. The adsorbed amount of MTBE on bentonite and vermiculite showed the maximum at 1% and 5% of humic acid, thereafter diminished while the adsorbed amount of MTBE on CTAB-bentonite increased in proportion to humic acid. Conversely, the adsorbed amount of Cd on the addition of humic acid continued to increase regardless of types of adsorbents. For all types of adsorbents, adsorbed quantity and adsorption efficiency of Cd have been coincidently increased at pH 8 and they were further enhanced at pH 10 showing 90% adsorption efficiency. Upon pH rose, the zeta potential on each adsorbent began to decrease, while increasing Cd concentration led to decline of zeta potential, which in turn ascribed to lowering dispersion stability that could consequently enhance adsorption capability.

Removal of Cd(II) by Cation Exchange Resin in Differential Bed Reactor (미분층반응기에서 양이온 교환수지에 의한 카드뮴(II)의 제거)

  • Kim, Jong-Tae;Chung, Jaygwan G.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1193-1203
    • /
    • 2000
  • In this study, in order to remove Cd(II) from aqueous solutions, strongly acidic cation exchange resin(SK1B) by Diaion Co. was employed as an adsorbent. Experiments were mainly performed in two parts at room temperature($25{\pm}5^{\circ}C$) : batch tests and adsorption kinetics tests. In batch tests adsorption equilibrium time, pH effects, temperature effects, several adsorption isotherms, and finally desorption tests were examined. In differential bed tests, an optimum flow rate and an overall adsorption rate were obtained. In the batch experiment, adsorption capability increased with pH and became constant above pH 6 and adsorption quantity increased with temperature. Batch experimental data found that Freundlich and Sips adsorption isotherms were more favorable than Langmuir adsorption isotherm over the range of concentration (5~15ppm). The desorbent used in the desorption test was hydrochloric acid solution with different concentrations(0.01~2N). The degree of regeneration increased with concentration of desorbent and decreased slightly with the number of regeneration. In the continuous flow process using a differential bed reactor, the optimum flow rate was $564m{\ell}/min$ above which the film diffusion resistance was minimized. The overall adsorption rate for the removal of Cd(II) by cation exchange resin was found as follows ; $r=1.3785C_{fc}^{1.2421}-2.0907{\times}10^{0.0746C_i}\;q_e^{0.0121C_i-0.0301}$

  • PDF

Pore Structure and Adsorption Characteristics of Metals and Nutrient Salt of Activated Carbon Produced from Different Chemical Treatment (서로 다른 약품처리를 이용하여 제조한 활성탄의 세공구조 및 중금속과 영양염류 흡착특성)

  • Lee, Young-Dong;Kang, Hwa-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1319-1330
    • /
    • 2000
  • Activated carbons prepared by chemical activation of organic waste sludges with $ZnCl_2$ and $K_2S$ have been studied in terms of their pore development and adsorptivity. Pore development of the carbons prepared from organic waste sludges was characterized by the nitrogen adsorption at 77K. The $ZnCl_2$-activated carbon produced by chemical activation with zinc chloride exhibited type I isotherm characteristics according to the BDDT classification, suggesting the presence of micropores formed by activation process. The isotherms of the commercial powdered activated carbon and $K_2S$-activated carbon reveal a hysteresis similar to that of type IV in BDDT classification, indicating the formation of mesopores. This result implies that the major pores of $K_2S$-activated carbon are composed of meso and micropores, and a macropores are minor. The adsorptive capacities of metal on the $K_2S$-activated carbon prepared from organic waste sludges were found to be superior to those on a commercial granular activated carbon. The Langmuir and Freundlich isotherms yield a fairly good fit to the adsorption data, indicating a monolayer adsorption of metals onto $K_2S$-activated carbon. The adsorptive capacity of the $K_2S$-activated carbon was superior to $ZnCl_2$-activated carbon for $PO_4$-P, and vice versa for $NO_3$-N. From the results of the studies reported here, it can be concluded that activated carbons with adsorptivity superior to commercial granular activated carbons can be produced from organic waste sludge using a two-step carbonization/activation procedure with zinc chloride or potassium sulfide as the activating agents.

  • PDF