Chlorella pyrenoidosa에 의한 납 흡.탈착시 고정화 방법의 영향

Effect of Immobilization Method in the Biosorption and Desorption of Lead by Algae, Chlorella pyrenoidosa

  • 신택수 (충북대학교 환경공학과) ;
  • 임병서 (한국환경자원공사 충북지사 산업지원팀) ;
  • 이상우 (충북대학교 환경공학과) ;
  • 류권걸 (충북대학교 환경공학과) ;
  • 정선기 (충북대학교 환경공학과) ;
  • 김광렬 (충북대학교 환경공학과)
  • Shin, Taek-Soo (Department of Environmental Engineering, Chungbuk National University) ;
  • Lim, Byung-Seo (Industry Support Team, Chungbuk Office, Korea Environment Resources Corporation) ;
  • Lee, Sang-Woo (Department of Environmental Engineering, Chungbuk National University) ;
  • Rhu, Kwon-Gul (Department of Environmental Engineering, Chungbuk National University) ;
  • Jeong, Seon-Ki (Department of Environmental Engineering, Chungbuk National University) ;
  • Kim, Kwang-Yul (Department of Environmental Engineering, Chungbuk National University)
  • 투고 : 2009.01.28
  • 심사 : 2009.08.07
  • 발행 : 2009.08.31

초록

본 연구는 조류 Chlorella pyrenoidosa에 의한 Pb 흡착시 고정화 방법이 흡착특성에 미치는 영향에 관한 것으로, 고정화는 Ca-alginate, K-carrageenan, and polyacrylamide를 이용하여 실시하였다. 연구결과, 고정화에 따라 흡착평형 도달시간의 지연이 나타났으며, Pb의 최대 흡착능(mg/g)은 중금속 농도와 pH가 높을수록, 고정체 투입량이 적을수록 높게 나타났다. 고정화 방법별 흡착능은 Ca-alginate로 고정화한 경우 가장 높은 흡착능을 나타낸 반면, 흡착량이 pH에 가장 민감하게 영향을 받았다. Pb 흡착현상은 Freundlich 등온흡착식에 의해 잘 해석되었고, 흡착속도는 2차 모형식을 따르는 것으로 나타났다. FT-IR분석으로 Chlorella pyrenoidosa에 의한 Pb의 생물흡착 메커니즘이 주로 carbo-acid와 amide 그룹에 Pb가 결합되어 일어남을 알 수 있었다. 흡착된 Pb의 탈착은 탈착제 농도가 높을수록 탈착 효율도 높았다. 실험에 사용되어진 여러 탈착제(NTA, HCl, EDTA, $H_2SO_4,\;Na_2CO_3$)중 Ca-alginate과 K-carrageenan로 고정화한 경우 NTA가 가장 높게 나타났으며, polyacrylamide로 고정한 경우 EDTA를 사용한 경우 가장 효과적인 것으로 나타났다. 고정화 방법별 최대 탈착효율은 각각 90.0, 83.0, 80.0% 이었다.

In this studies, the adsorption test using Chlorella pyrenoidosa was conducted to examine the effect of Pb adsorption according to various immobilized methods such as Ca-alginate, K-carrageenan, and Polyacrylamide. From the results, the duration to need to reach adsorption equilibrium was delayed according to the immobilization. And, the higher adsorption capacity of immobilized Chlorella pyrenoidosa was represented in the higher concentration of Pb, the smaller amount of immobilizing agent, and the higher pH of solution. The maximum adsorption capacity of Pb was shown in the adsorption test using Chlorella pyrenoidosa immobilized with Ca-alginate even though it was sensitive pH. The adsorption results properly represented with Freundlich isotherm equations. And, pseudo second-order chemisorption kinetic rate equation was applicable to all the biosorption data over the entire time range. The FT-IR analysis showed that the mechanism involved in biosorption of Pb by Chlorella pyrenoidosa was mainly attributed to Pb binding of carbo-acid and amide group. Adsorbed Pb on immobilized Chlorella prenoidosa was easily desorbed in the higher concentration of desorbents(NTA, HCl, EDTA, $H_2SO_4,\;Na_2CO_3$). Among the several desorbents, NTA showed the maximum desoption capacities of Pb from Chlorella pyrenoidosa immobilized with Ca-alginate and K-carrageenan and EDTA was the most effective in Chlorella pyrenoidosa immobilized with polyacrylamide. The desoprtion efficiency in the optimum condition was 90.0, 83.0, and 80.0%, respectively.

키워드

참고문헌

  1. EPA, 'Recovery of Metals from Sludges and Wastewaters', EPA/600/S2-91/041, 548-028/40080(1991)
  2. 김성현, 송훈, 손석일, 임인권, 정욱진, 'Zoogloea ramigera 115SLR을 이용한 납 생물흡착특성', 상하수도학회지, 20(1), 63-70(2006)
  3. Volesky. B., Biosorption of Heavy Metals, CRC Press, Inc.(1990)
  4. Kandah, M., Abu Al-Rub F.A., and Al-Dabaybeh, N., 'The aqueous adsorption of copper and cadmium ions on sheep manure', Adsorption Science Technolo., 21, 501-509(2003) https://doi.org/10.1260/026361703771953569
  5. Kuhn, S. P., and Pfister, R. M., 'Adsorption of mixed metals and cadmium by calcium-alginate immobilized Zoogloea ramigera', Appl. Microbiol. Biotechnol., 31, 613-618(1989) https://doi.org/10.1007/BF00270805
  6. Angerer, A., Klipp, B., and Braun, V.,' Iron transport systems of Serratia marcescens', J. Bacterial., 174(4), 1378-1387(1992) https://doi.org/10.1128/jb.174.4.1378-1387.1992
  7. William, H. Lee and Michael, Rosenbaum, Chlorella, McGraw-Hill(1987)
  8. U.S. Wikipedia Home Page, http://www.wikipedia.org (2001)
  9. Tsezos, M., S. H. Noh and M. H. I. Baird,' A batch reactor mass transfer kinetic model for immobilized biomass', Biotech. Bioeng., 32, 545-553(1988) https://doi.org/10.1002/bit.260320418
  10. 조주식, '중금속 내성균의 균체내 중금속 축적 특성 및 중금속흡착제로서의 이용', 경상대학교 대학원 박사학위논문(1995)
  11. Ho, YS, and McKay, G., 'Pseudo-second order model for sorption processes', Process Biochem., 34, 451-465(1999) https://doi.org/10.1016/S0032-9592(98)00112-5
  12. Pan, Xiangliang, Wang, Jianlong and Zhang, Daoyong, 'Biosorption of Pb(Ⅱ) by Pleurotus ostreatus immobilized in calcium alginate gel', Process Biochem., 40, 2799-2803(2005) https://doi.org/10.1016/j.procbio.2004.12.007
  13. Nakajima, A., Horikoshi, T., and Sakaguchi, T., 'Recovery of uranium by immobilized microorganism', Eur. J. Appl. Microbiol. Biotechnol., 16, 88-91(1982) https://doi.org/10.1007/BF00500732
  14. Fristoe, B. R., and Nelson, P. O., 'Equilibrium chemical modeling of heavy metals in activated sludge', Water Res., 17(7), 771-778(1983) https://doi.org/10.1016/0043-1354(83)90071-4
  15. Gong, R., Ding, Y., Liu, H., Chen, Q., and Liu Z., 'Lead biosorption and desorption by intact and pretreated Spirulina maxima', Chemosphere, 58, 125-130(2005) https://doi.org/10.1016/j.chemosphere.2004.08.055
  16. Gokhale, S. V., Jyoti, K. K., and Lele, S. S., 'Kinetic and equilibrium modeling of chromium(Ⅳ) biosorption on fresh and spent Spiurlina platensis/Chlorella vulgaris biomass', Bioresource Tech., 99(9), 3600-3608(2008) https://doi.org/10.1016/j.biortech.2007.07.039
  17. Freundlich, H., Colloid and Capillary Chemistry, Metheun, London (1926)
  18. Langmuir, I. J.,' The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum', Journal of the American Chemical Society, 40, 1361-1403(1918) https://doi.org/10.1021/ja02242a004
  19. 北川睦夫, 활성탄 수처리 기술과 관리, 신광문화사(1995)
  20. Fuminiko Ogata, Naohito Kawasaki, Takeo Nakomura and Seiki Tanada, 'Removal of arsenious ion by calcined aluminum oxyhydroxide (boehmite)', J. Colloid Interface Sci., 300, 88-93 (2006) https://doi.org/10.1016/j.jcis.2006.03.026