• Title/Summary/Keyword: freundlich

Search Result 630, Processing Time 0.022 seconds

Isotherms, Kinetics and Thermodynamic Parameters Studies of New Fuchsin Dye Adsorption on Granular Activated Carbon (입상 활성탄에 대한 New Fuchsin 염료흡착의 등온선, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.632-638
    • /
    • 2014
  • Batch adsorption studies including equilibrium, kinetics and thermodynamic parameters for the adsorption of new fuchsin dye using granular activated carbon were investigated with varying the operating variables such as initial concentration, contact time and temperature. Equilibrium adsorption data were fitted into Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherms. Adsorption equilibrium was mostly well described by Langmuir Isotherm. From the estimated separation factor of Langmuir ($R_L$ = 0.023), and Freundlich (1/n = 0.198), this process could be employed as an effective treatment for the adsorption of new fuchsin dye. Also based on the adsorption energy (E = 0.002 kJ/mol) from Dubinin-Radushkevich isotherm and the adsorption heat constant (B = 1.920 J/mol) from Temkin isotherm, this adsorption is physical adsorption. From kinetic experiments, the adsorption reaction processes were confirmed following the pseudo second order model with good correlation. The intraparticle diffusion was a rate controlling step. Thermodynamic parameters including changes of free energy, enthalpy, and entropy were also calculated to predict the nature of adsorption. The change of enthalpy (92.49 kJ/mol) and activation energy (11.79 kJ/mol) indicated the endothermic nature of adsorption processes. The change of entropy (313.7 J/mol K) showed an increasing disorder in the adsorption process. The change of free energy found that the spontaneity of process increased with increasing the adsorption temperature.

Equilibrium, Kinetic and Thermodynamic Parameter Studies on Adsorption of Allura Red from Aqueous Solution by Granular Activated Carbon (입상활성탄에 의한 수용액으로부터 오로라 레드의 흡착에 대한 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.430-436
    • /
    • 2014
  • Allura Red (AR) is a water-soluble harmful tar-based food colorant (FD & C Red 40). Batch adsorption studies were performed for the removal of AR using bituminous coal based granular activated carbon as adsorbent by varying the operation parameters such as adsorbent dosage, initial concentration, contact time and temperature. Experimental equilibrium adsorption data were analyzed by Langmuir, Freundlich and Temkin isotherms. The equilibrium process was described well by Freundlich isotherm. From determined separation factor ($R_L$), adsorption of AR by granular activated carbon could be employed as effective treatment method. Temkin parameter, B was determined to 1.62~3.288 J/mol indicating a physical adsorption process. By estimation of adsorption rate experimental data, the value of intraparticle diffusion rate constant ($k_m$) increased with the increasing adsorption temperature. The adsorption process were found to confirm to the pseudo second order model with good correlation. Thermodynamic parameters like change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption in the temperature range of 298~318 K. The negative Gibbs free energy change (${\Delta}G$ = -2.16~-6.55 kJ/mol) and the positive enthalpy change (${\Delta}H$ = + 23.29 kJ/mol) indicated the spontaneous and endothermic nature of the adsorption process, respectively.

Evaluation of Removal Characteristics of Taste and Odor Causing Compounds using Meso-Porous Absorbent (메조공극 흡착제를 이용한 상수원수내 맛·냄새 유발물질 제거특성 평가)

  • Kim, Jong-Doo;Park, Chul-Hwi;Yun, Yeo-Bog;Lee, Dae-Sung;Kim, Hyo-Jeon;Kang, Seok-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.1
    • /
    • pp.26-33
    • /
    • 2017
  • The objective of this study was to evaluate the characteristic of adsorption by using a meso-porous adsorbent (MPA), and investigate the removal efficiency of geosmin which taste and odor causing compounds in drinking water supplies through batch test. The results for the adsorption isotherm was analyzed by using the Langmuir equation and Freundlich equation, generally being applied. And the study showed that the both Langmuir and Freundlich equation explains the results better. Both of pseudo-first-order model and pseudo-second-order model were respectively applied for evaluation of kinetic sorption property of geosmin onto MPA. The adsorption experiment results using MPA showed that maximum adsorption capacity of MPA was lower 7 times than that of GAC, and adsorption rate of MPA was faster 11 times than that of GAC, on the basis of pseudo-first-order model. Therefore, it was determined that MPA was effectively able to remove geosmin in drinking water supplies in short EBCT condition, but regeneration cycle in MAP process was shorter than that in conventional process.

Study on Equilibrium, Kinetic and Thermodynamic for Adsorption of Quinoline Yellow by Granular Activated Carbon (입상 활성탄에 의한 Quinoline Yellow의 흡착에 대한 평형, 동력학 및 열역학에 관한 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.20 no.1
    • /
    • pp.35-41
    • /
    • 2014
  • Batch adsorption studies were carried out for equilibrium, kinetic and thermodynamic parameters for quinoline yellow adsorption by granular activated carbon ($8{\times}30mesh$, $1,578m^2/g$) with varying the operating variables like initial concentration, contact time and temperature. Equilibrium adsorption data were fitted into Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms. From estimated Langmuir constant ($R_L=0.0730{\sim}0.0854$), Freundlich constant (1/n = 0.2077~0.2268), this process could be employed as effective treatment for removal of quinoline yellow. From calculated Temkin constant (B = 15.759~21.014 J/mol) and Dubinin-Radushkevich constant (E = 1.0508~1.1514 kJ/mol), this adsorption process is physical adsorption. From kinetic experiments, the adsorption process were found to confirm to the pseudo second order model with $r^2$ > 0.99 for all concentrations and temperatures. Thermodynamic parameters like activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption. The activation energy value (+35.137 kJ/mol) and enthalpy change (35.03 kJ/mol) indicated endothermic nature of the adsorption process. Entropy change (+134.38 J/mol K) showed that increasing disorder in process. Free energy change found that the spontaneity of process increased with increasing adsorption temperature.

Adsorption Characteristics of Copper Ion onto a Bentonite (벤토나이트에 의한 구리이온의 흡착특성)

  • Goh, E.O.;Lee, J.O.;Cho, W.J.;Hyun, J.H.;Kang, C.H.;Chun, K.S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.83-89
    • /
    • 2000
  • Bentonite has been considered as a liner material to restrict the release of hazardous heavy metals from the landfill. The adsorption of copper onto a domestic bentonite was studied to provide the adsorption isotherm and the effect of solution chemistry and temperature. The copper adsorption was fitted well to a Freundlich isotherm, in which Freundlich constants and correlation coefficient were calculated to be $K_F=1.18$, n=1.65, and $r^2=0.97$, respectively. The distribution coefficients ($K_d$) for the adsorption of copper decreased with increasing initial copper concentration. The $K_d$ increased with increasing the pH of solution, and drastically increased at pH > 5.3 because of precipitation of most copper species. As the ion strength of $Na^+$ in solution increased the $K_d$ decreased, while it increased with increasing the concentration of $SO_4{^{2-}}$ in solution. An increase in the temperature of experimental solution decreased the $K_d$ values.

  • PDF

Evaluation of Cd Adsorption Characteristic by Microplastic Polypropylene in Aqueous Solution (수중에서 미세플라스틱인 Polypropylene의 Cd 흡착특성 평가)

  • Eom, Ju-Hyun;Park, Jong-Hwan;Kim, Seong-Heon;Kim, Yeong-Jin;Ryu, Sung-Ki;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.2
    • /
    • pp.83-88
    • /
    • 2019
  • BACKGROUND: In recent years, studies on microplastics have focused on their decomposition in the ocean. However, no studies have been reported on the interaction between microplastics and metal ions in aqueous solutions. Therefore, this study was conducted to evaluate the adsorption capacity of cadmium(Cd) by polypropylene (PP) in aqueous solution. METHODS AND RESULTS: Cadmium adsorption characteristics of PP in aqueous solution were evaluated through various conditions including initial Cd concentration(1.25-25 mg/L), contact time(0.5-24 h), initial pH(2-6) and temperature($20-50^{\circ}C$). Cadmium adsorption fit on PP was well described by Freundlich isotherm model with adsorption capacity(K) of 0.028. The adsorption amount of Cd by PP increased with increasing contact time, indicating that adsorption of PP by Cd was dominantly influenced by contact time. Especially, the removal efficiency of Cd by PP was highest at high temperature. However, the surface functional groups of PP before and after adsorption of Cd were similar, suggesting that adsorption of Cd by PP is not related to surface functional groups. CONCLUSION: Our study suggests that PP affects the behavior of Cd in aqueous solution. However, in order to clarify the specific relationship between microplastics and metal ions, mechanism research should be carried out.

Adsorption and Diffusion Characteristics of Benzene, Toluene, and Xylene Vapors on Activated Carbon and Zeolite 13X (활성탄과 제올라이트 13X에서 벤젠, 톨루엔 및 자일렌 증기의 흡착 및 확산 특성)

  • Jung, Min-Young;Suh, Sung-Sup
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.358-367
    • /
    • 2019
  • Adsorption equilibrium and intraparticle diffusion characteristics of benzene, toluene, and xylene vapors on activated carbon and zeolite 13X were investigated. Static adsorption experiments were carried out under the pressure range of 0.01~0.07 bar while changing the adsorption temperature to 293.15 K, 303.15 K, and 313.15 K, respectively. Adsorption equilibrium was analyzed by Langmuir, Freundlich and Toth models. The adsorption energy was 5.26~31.0 kJ/mol representing physical adsorption characteristics. The maximum adsorption capacity on activated carbon was the largest for benzene, and the smallest for xylene. Toluene was in between. In the case of zeolite 13X, the maximum adsorption capacity was the largest for xylene, and the smallest for benzene as opposed to activated carbon. The effective diffusion coefficients of gas adsorbate were measured to be about $10^{-5}{\sim}10^{-4}cm^2/s$, and increased with temperature. As the pressure increased, the effective diffusion coefficients were decreased. The dependence of effective diffusion coefficients on temperature and pressure was greater in zeolite 13X particles than in activated carbon. Therefore, it is necessary to express the diffusion coefficients as a function of pressure in order to predict the precise dynamic behavior of the adsorption process using zeolite 13X where the pressure fluctuation occurs abruptly.

Isotherm, Kinetic, Thermodynamic and Competitive for Adsorption of Brilliant Green and Quinoline Yellow Dyes by Activated Carbon (활성탄에 의한 Brilliant Green과 Quinoline Yellow 염료의 흡착에 대한 등온선, 동력학, 열역학 및 경쟁흡착)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.565-573
    • /
    • 2021
  • Isotherms, kinetics and thermodynamic properties for adsorption of Brilliant Green(BG), Quinoline Yellow(QY) dyes by activated carbon were carried out using variables such as dose of adsorbent, pH, initial concentration, contact time, temperature and competitive. BG showed the highest adsorption rate of 92.4% at pH 11, and QY was adsorbed at 90.9% at pH 3. BG was in good agreement with the Freundlich isothermal model, and QY was well matched with Langmuir model. The separation coefficients of isotherm model indicated that these dyes could be effectively treated by activated carbon. Estimated adsorption energy by Temkin isotherm model indicated that the adsorption of BG and QY by activated carbon is a physical adsorption. The kinetic experimental results showed that the pseudo second order model had a better fit than the pseudo first order model with a smaller in the equilibrium adsorption amount. It was confirmed that surface diffusion was a rate controlling step by the intraparticle diffusion model. The activation energy and enthalpy change of the adsorption process indicated that the adsorption process was a relatively easy endothermic reaction. The entropy change indicated that the disorder of the adsorption system increased as the adsorption of BG and QY dyes to activated carbon proceeded. Gibbs free energy was found that the adsorption reaction became more spontaneous with increasing temperature. As a result of competitive adsorption of the mixed solution, it was found that QY was disturbed by BG and the adsorption reduced.

Characteristics of Equilibrium, Kinetics, and Thermodynamics for Adsorption of Acid Black 1 Dye by Coal-based Activated Carbon (석탄계 활성탄에 의한 Acid Black 1 염료의 흡착에 있어서 평형, 동력학, 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.261-268
    • /
    • 2021
  • Equilibrium, kinetics, and thermodynamics of adsorption of acid black 1 (AB1) by coal-based granular activated carbon (CGAC) were investigated with the adsorption variables of initial concentration of dye, contact time, temperature, and pH. The adsorption reaction of AB1 by activated carbon was caused by electrostatic attraction between the surface (H+) of activated carbon and the sulfite ions (SO3-) and nitrite ions (NO2-) possessed by AB1, and the degree of reaction was highest at pH 3 (97.7%). The isothermal data of AB1 were best fitted with Freundlich isotherm model. From the calculated separation factor (1/n) of Freundlich, it was confirmed that adsorption of AB1 by activated carbon could be very effective. The heat of adsorption in the Temkin model suggested a physical adsorption process (< 20 J mol-1). The kinetic experiment favored the pseudo second order model, and the equilibrium adsorption amount estimated from the model agreed to that given by the experiments (error < 9.73% ). Intraparticle diffusion was a rate controlling step in this adsorption process. From the activation energy and enthalpy change, it was confirmed that the adsorption reaction is an endothermic reaction proceeding with physical adsorption. The entropy change was positive because of an active reaction at the solid-liquid interface during adsorption of AB1 on the activated carbon surface. The free energy change indicated that the spontaneity of the adsorption reaction increased as the temperature increased.

다당류를 이용한 중금속 이온의 흡착특성 비교

  • Kim, Se-Gyeong;Yun, Hyeon-Sik
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.386-389
    • /
    • 2000
  • Polysaccharides are very effective adsorbents for heavy metals. In this study, the adsorption characteristics of various polysaccharides for heavy metal adsorption were investigated. Tested polysaccharides were homogeneous polysaccharides such as curdlan, chitin, starch, cellulose, Avicel, and Solka floc and heterogeneous polysaccharides such as zooglan, locust bean gum, ghatti gum, pectin, and xylan. Lead(II) adsoption characteristic on these polysaccharides followed Freundlich isotherm and the isotherm parameters were calculated. For adsorption of lead(ll), Avicel, starch, and zooglan were found to be good adsorbents.

  • PDF