• Title/Summary/Keyword: freshwater environments

Search Result 129, Processing Time 0.378 seconds

A report on 22 unrecorded Actinomycetota species isolated from freshwater environments in the Republic of Korea

  • Soo-Yeong Lee;Jaeduk Goh;Ahyoung Choi
    • Korean Journal of Environmental Biology
    • /
    • v.42 no.3
    • /
    • pp.288-300
    • /
    • 2024
  • Freshwater environments are rich ecosystems that support diverse microbial communities, including members of the phylum Actinomycetota critical for nutrient cycling, organic matter decomposition, and water quality maintenance. Actinomycetota known to produce numerous bioactive secondary metabolites are valuable in biotechnology, medicine, and agriculture. Despite their significance, the diversity and distribution of Actinomycetota in freshwater habitats, especially in the Republic of Korea, are underexplored. This study aimed to report the isolation and characterization of 22 previously unrecorded bacterial species of Actinomycetota from various freshwater environments in Korea. Using standard dilution plating techniques on six different culture media, 22 bacterial strains were isolated, incubated, and characterized based on colony and cellular morphologies, Gram staining, and biochemical properties. Genomic DNA was extracted and the 16S rRNA gene was sequenced to determine species identity using the EzBioCloud service with a cutoff of 98.7% sequence similarity for classification as unreported species. These strains were phylogenetically diverse, belonging to two classes, ten orders, and eighteen genera. This study enhances our understanding of bacterial diversity in freshwater ecosystems and underscores the importance of exploring microbial diversity in underexplored habitats, potentially leading to discovery of novel bioactive compounds. Findings of this study contribute valuable insights into ecological roles and biotechnological potential of Actinomycetota in freshwater environments.

Phytopythium and Pythium Species (Oomycota) Isolated from Freshwater Environments of Korea

  • Nam, Bora;Choi, Young-Joon
    • Mycobiology
    • /
    • v.47 no.3
    • /
    • pp.261-272
    • /
    • 2019
  • Oomycetes are widely distributed in various environments, including desert and polar regions. Depending upon different habits and hosts, they have evolved with both saprophytic and pathogenic nutritional modes. Freshwater ecosystem is one of the most important habitats for members of oomycetes. Most studies on oomycete diversity, however, have been biased mostly towards terrestrial phytopathogenic species, rather than aquatic species, although their roles as saprophytes and parasites are essential for freshwater ecosystems. In this study, we isolated oomycete strains from soil sediment, algae, and decaying plant debris in freshwater streams of Korea. The strains were identified based on cultural and morphological characteristics, as well as molecular phylogenetic analyses of ITS rDNA, cox1, and cox2 mtDNA sequences. As a result, we discovered eight oomycete species previously unknown in Korea, namely Phytopythium chamaehyphon, Phytopythium litorale, Phytopythium vexans, Pythium diclinum, Pythium heterothallicum, Pythium inflatum, Pythium intermedium, and Pythium oopapillum. Diversity and ecology of freshwater oomycetes in Korea are poorly understood. This study could contribute to understand their distribution and ecological function in freshwater ecosystem.

High Plasticity of the Gut Microbiome and Muscle Metabolome of Chinese Mitten Crab (Eriocheir sinensis) in Diverse Environments

  • Chen, Xiaowen;Chen, Haihong;Liu, Qinghua;Ni, Kangda;Ding, Rui;Wang, Jun;Wang, Chenghui
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.240-249
    • /
    • 2021
  • Phenotypic plasticity is a rapid response mechanism that enables organisms to acclimate and survive in changing environments. The Chinese mitten crab (Eriocheir sinensis) survives and thrives in different and even introduced habitats, thereby indicating its high phenotypic plasticity. However, the underpinnings of the high plasticity of E. sinensis have not been comprehensively investigated. In this study, we conducted an integrated gut microbiome and muscle metabolome analysis on E. sinensis collected from three different environments, namely, an artificial pond, Yangcheng Lake, and Yangtze River, to uncover the mechanism of its high phenotypic plasticity. Our study presents three divergent gut microbiotas and muscle metabolic profiles that corresponded to the three environments. The composition and diversity of the core gut microbiota (Proteobacteria, Bacteroidetes, Tenericutes, and Firmicutes) varied among the different environments while the metabolites associated with amino acids, fatty acids, and terpene compounds displayed significantly different concentration levels. The results revealed that the gut microbiome community and muscle metabolome were significantly affected by the habitat environments. Our findings indicate the high phenotypic plasticity in terms of gut microbiome and muscle metabolome of E. sinensis when it faces environmental changes, which would also facilitate its acclimation and adaptation to diverse and even introduced environments.

Pezizomycotina (Ascomycota) Fungi Isolated from Freshwater Environments of Korea: Cladorrhinum australe, Curvularia muehlenbeckiae, Curvularia pseudobrachyspora, and Diaporthe longicolla

  • Nam, Bora;Lee, Jae Sung;Lee, Hyang Burm;Choi, Young-Joon
    • The Korean Journal of Mycology
    • /
    • v.48 no.1
    • /
    • pp.29-38
    • /
    • 2020
  • Fungi are ubiquitous and indispensable components of nearly all ecosystems on earth, including freshwater environments. A survey of fungal diversity in freshwater environments of Korea led to the identification of four unrecorded Pezizomycotina (Ascomycota) species in 2016 and 2017, based on morphology and molecular phylogeny; these included Cladorrhinum australe, Curvularia muehlenbeckiae, Curvularia pseudobrachyspora (Dothideomycetes), and Diaporthe longicolla (Sordariomycetes).

Variations in Marine Environments and Phytoplankton Community around Mokpo Harbour (목포항 주변해역의 수질 및 식물플랑크톤 변동 특성)

  • Cho, Eun-Seob
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1323-1336
    • /
    • 2010
  • This study was carried out to determine marine environments and phytoplankton community around Mokpo harbour on March to November during the period of 2004-2009. The remarkable fluctuations of marine environments were shown around Mokpo harbour depending on monthly and yearly. Among seasons, summer was a great that was associated with extremely releasing the freshwater from Youngsan River Weir, contributing to effect the fluctuations of water quality. Nevertheless of monthly and yearly, the molecular ratio of N:P was always shown in above 16 that was mainly attributed to freshwater discharge on March to November. This indicates that phosphorus playes an important role in limiting factor as growth in phytoplankton. During this study, Skeletonema costatum was found to be richer than the other groups of diatoms in terms of abundance and species number. Mokpo harbour, with the presence of a narrow avenue for exchange with offshore waters, has limited growth in phytoplankton, but this species is able to well adapt and fast grow under even high level of suspended solid and low intensity of light compared with other species. The discharge of freshwater is associated with significantly fluctuation of marine environments in this region, but it does not affect the quantitative and qualitative distribution of phytoplankton. It is necessary to persistently monitor based on water quality and phytoplankton community.

Evaluation of Extracellular Enzyme Activity of Fungi from Freshwater Environment in South Korea (담수환경에서 분리한 곰팡이의 세포외분해효소 활성 탐색)

  • Hye Yeon Mun;Yoosun Oh;Jaeduk Goh
    • The Korean Journal of Mycology
    • /
    • v.51 no.4
    • /
    • pp.265-276
    • /
    • 2023
  • This study aimed to isolate and characterize fungi from freshwater environments in South Korea and evaluate their extracellular enzyme activities. Fungal strains were collected from various freshwater sources and identified using phylogenetic analysis. The isolated fungi included known aquatic hyphomycetes and previously unreported species. Extracellular enzyme, including those of protease, amylase, lipase, cellulase, laccase, and chitinase, activities were evaluated. Among the isolated strains, several showed high enzyme activity, suggesting their potential role in organic matter decomposition in freshwater ecosystems. This research expands our knowledge of the diversity and enzyme activities of the fungi in freshwater environments, contributing to our understanding of their ecological roles.

Diversity of Aspergillus, Penicillium, and Talaromyces Species Isolated from Freshwater Environments in Korea

  • Heo, Inbeom;Hong, Kyeongyeon;Yang, Hyejin;Lee, Hyang Burm;Choi, Young-Joon;Hong, Seung-Beom
    • Mycobiology
    • /
    • v.47 no.1
    • /
    • pp.12-19
    • /
    • 2019
  • In order to elucidate the fungal diversity and community structure in freshwater environments, numerous fungal strains were isolated from freshwater, submerged soils, twigs, dead insects, etc. Among them, the present study has focused specifically on Aspergillus, Penicillium, and Talaromyces species, which produce diverse useful metabolites in general. Twelve strains of Aspergillus isolated were identified as A. japonicus (n = 5), A. tubingensis (3), A. niger (2), and A. flavus (2), 10 strains of which belong to Aspergillus section Nigri, named black Aspergillus. Eight strains of Penicillium were identified as P. brasilianim (n = 3), P. oxalicum (2), P. crustosum (1), P. expansum (1), and P. piscarium (1). Two different strains of Talaromyces were identified as T. pinophilus and T. versatilis. Thus far, Penicillium piscarium and Talaromyces versatilis have been unrecorded in Korea, for which we provide detailed morphological and molecular characteristics.

Formal characteristics of an unrecorded freshwater diatom (Bacillariophyceae) in Korea

  • Daeryul Kwon;Kyeong-Eun Yoo;Hyunjin Cho;Chaehong Park
    • Korean Journal of Environmental Biology
    • /
    • v.42 no.2
    • /
    • pp.158-171
    • /
    • 2024
  • Diatoms, which are reported to have over 18,000 species worldwide and approximately 2,400 species in Korea, can be found in various environments including freshwater, seawater, and wetlands. They are particularly valuable for understanding global environmental changes throughout history due to their ability to maintain their shape for extended periods of time. Instead of collecting floating diatoms using nets, low-layer substrates such as gravel and leaves, as well as sedimentary surface layers, were gathered in order to identify attached diatom species. This is because attached diatoms demonstrate higher species diversity compared to floating diatoms. In this study, seven previously unrecorded diatoms were discovered in various domestic freshwater environments. Two species were found in reservoirs (Eunotia yanomami, Gomphonella pseudookunoi), two in parasitic cones (Eunotia karveerensis, Luticola minor), two in rivers (Cavinula maculata and Prestauroneis integra), and one (Surirella brebissonii var. kuetzingii) in a lagoon. The shapes, structures, and morphological characteristics of each diatom were identified using electron microscopy.

High-Temperature-Tolerant Fungus and Oomycetes in Korea, Including Saksenaea longicolla sp. nov.

  • Nam, Bora;Lee, Dong-Jae;Choi, Young-Joon
    • Mycobiology
    • /
    • v.49 no.5
    • /
    • pp.476-490
    • /
    • 2021
  • Global temperatures are steadily increasing, leading to significant changes in microbial diversity and ecology. In the present study, we isolated high-temperature-growing fungi and fungi-like group (Oomycota) strains from freshwater environments of Korea and identified them based on cultural, morphological, and multilocus phylogenetic analyses. As a result, we introduce Saksenaea (Fungi) isolates as a new species, Saksenaea longicolla sp. nov. and record Phytophthora chlamydospora and P. lagoariana (Oomycota) new to Korea. In the growth experiments, they exhibited high-temperature tolerance, which can grow at 35-40 ℃ but become inactive at 4 ℃ and below. This study confirms the presence of high-temperature-tolerant fungi and oomycetes in Korea and suggests that the Korean climate conditions are changing in favor of these species. This indicates that climate warming is altering microbial distributions in freshwater environments.

First Report of Six Trichoderma Species Isolated from Freshwater Environment in Korea

  • Goh, Jaeduk;Nam, Bora;Lee, Jae Sung;Mun, Hye Yeon;Oh, Yoosun;Lee, Hyang Burm;Chung, Namil;Choi, Young-Joon
    • The Korean Journal of Mycology
    • /
    • v.46 no.3
    • /
    • pp.213-225
    • /
    • 2018
  • Trichoderma (Hypocreaceae) is one of the most ubiquitous genera worldwide. This genus has an excellent ability to adapt to diverse environments, even under poor nutritional conditions, such as in freshwater. However, little is known about the diversity of Trichoderma species in freshwater environments. In this study, we isolated diverse fungal strains from algae, plant litter, and soil sediment in streams in Korea. The strains were identified based on molecular phylogenetic analyses of internal transcribed spacer (ITS) rDNA and translation elongation factor 1 ($TEF1{\alpha}$) sequences. We also investigated their morphological characteristics by microscopic observation and determination of cultural features on different media. As a result, six Trichoderma species were found in Korea: T. afroharzianum, T. capillare, T. guizhouense, T. paraviridescens, T. reesei, and T. saturnisporum. Interestingly, T. paraviridescens showed both cellulose activity and hypoxia stress tolerance phenotypes, indicating its role as a decomposer in freshwater ecosystems. Our study revealed that freshwater environment could be a good candidate for investigating the species diversity of Trichoderma.