Browse > Article
http://dx.doi.org/10.1080/12298093.2019.1625174

Phytopythium and Pythium Species (Oomycota) Isolated from Freshwater Environments of Korea  

Nam, Bora (Department of Biology, College of Natural Sciences, Kunsan National University)
Choi, Young-Joon (Department of Biology, College of Natural Sciences, Kunsan National University)
Publication Information
Mycobiology / v.47, no.3, 2019 , pp. 261-272 More about this Journal
Abstract
Oomycetes are widely distributed in various environments, including desert and polar regions. Depending upon different habits and hosts, they have evolved with both saprophytic and pathogenic nutritional modes. Freshwater ecosystem is one of the most important habitats for members of oomycetes. Most studies on oomycete diversity, however, have been biased mostly towards terrestrial phytopathogenic species, rather than aquatic species, although their roles as saprophytes and parasites are essential for freshwater ecosystems. In this study, we isolated oomycete strains from soil sediment, algae, and decaying plant debris in freshwater streams of Korea. The strains were identified based on cultural and morphological characteristics, as well as molecular phylogenetic analyses of ITS rDNA, cox1, and cox2 mtDNA sequences. As a result, we discovered eight oomycete species previously unknown in Korea, namely Phytopythium chamaehyphon, Phytopythium litorale, Phytopythium vexans, Pythium diclinum, Pythium heterothallicum, Pythium inflatum, Pythium intermedium, and Pythium oopapillum. Diversity and ecology of freshwater oomycetes in Korea are poorly understood. This study could contribute to understand their distribution and ecological function in freshwater ecosystem.
Keywords
Oomycete; freshwater; taxonomy; ecology; pythiales;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Beakes GW, Honda D, Thines M. 3 systematics of the straminipila: labyrinthulomycota, hyphochytriomycota, and oomycota. In: McLaughlin DJ, Spatafora JW, editors. Systematics and evolution. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 39-97.
2 Sekimoto S, Beakes GW, Gachon CMM, et al. The development, ultrastructural cytology, and molecular phylogeny of the basal oomycete Eurychasma dicksonii, infecting the filamentous phaeophyte algae Ectocarpus siliculosus and Pylaiella littoralis. Protist. 2008;159:299-318.   DOI
3 Choi YJ, Lee SH, Nguyen TTT, et al. Characterization of Achlya americana and A. bisexualis (Saprolegniales, Oomycota) isolated from freshwater environments in Korea. Mycobiology. 2019;47:135-142.   DOI
4 Sarowar M. Infection strategies of pathogenic oomycetes in fish. In: Jones EBG, Hyde KD, Pang K-L, editors. Freshwater Fungi and Fungal-like Organisms. Berlin, Germany: de Gruyter; 2014. p. 217-243.
5 Thines M, Kamoun S. Oomycete-plant coevolution: recent advances and future prospects. Curr Opin Plant Biol. 2010;13:427-433.   DOI
6 Thines M. Phylogeny and evolution of plant pathogenic oomycetes-a global overview. Eur J Plant Pathol. 2014;138:431-447.   DOI
7 Wong MKM, Goh TK, Hodgkiss I, et al. Role of fungi in freshwater ecosystems. Biodivers Conserv. 1998;7:1187-1206.   DOI
8 Wurzbacher C, Kerr J, Grossart HP. Aquatic fungi. In: Grillo O, Venora G, editors. The dynamical processes of biodiversity - case studies of evolution and spatial distribution. Rijeka, Croatia: IntechOpen; 2011. Available from: https://www.intechopen.com/books/the-dynamical-processes-ofbiodiversity-case-studies-of-evolution-and-spatialdistribution/aquatic-fungi.
9 Ruthig GR. Water molds of the genera Saprolegnia and Leptolegnia are pathogenic to the North American frogs Rana catesbeiana and Pseudacris crucifer, respectively. Dis Aquat Org. 2009;84:173-178.   DOI
10 Fernandez-Beneitez MJ, Ortiz-Santaliestra ME, Lizana M, et al. Saprolegnia diclina: another species responsible for the emergent disease 0Saprolegnia infections' in amphibians. FEMS Microbiol Lett. 2008;279:23-29.   DOI
11 Sekimoto S, Yokoo K, Kawamura Y, et al. Taxonomy, molecular phylogeny, and ultrastructural morphology of Olpidiopsis porphyrae sp. nov. (Oomycetes, straminipiles), a unicellular obligate endoparasite of Bangia and Porphyra spp. (Bangiales, Rhodophyta). Mycol Res. 2008;112:361-374.   DOI
12 Kim GH, Moon KH, Kim JY, et al. A revaluation of algal diseases in Korean Pyropia (Porphyra) sea farms and their economic impact. Algae. 2014;29:249-265.   DOI
13 Jeong Lee S, Sook Hwang M, Ae Park M, et al. Molecular identification of the algal pathogen Pythium chondricola (Oomycetes) from Pyropia yezoensis (Rhodophyta) using ITS and cox1 markers. Algae. 2015;30:217-222.   DOI
14 Shin S, Kulatunga DCM, Dananjaya SHS, et al. Saprolegnia parasitica isolated from Rainbow Trout in Korea: Characterization, anti-Saprolegnia activity and host pathogen interaction in Zebrafish Disease Model. Mycobiology. 2017;45:297-311.   DOI
15 Ho H. The taxonomy and biology of Phytophthora and Pythium. J Bacteriol Mycol: Open Access. 2018;6:00174.
16 Nechwatal J, Wielgoss A, Mendgen K. Diversity, host, and habitat specificity of oomycete communities in declining reed stands (Phragmites australis) of a large freshwater lake. Mycol Res. 2008;112:689-696.   DOI
17 Nechwatal J, Mendgen K. Pythium litorale sp. nov., a new species from the littoral of Lake Constance, Germany. FEMS Microbiol Lett. 2006;255:96-101.   DOI
18 Hadar Y, Mandelbaum R. Suppression of Pythium aphanidermatum damping-off in container media containing composted liquorice roots. Crop Protect. 1986;5:88-92.   DOI
19 Craft CM, Nelson EB. Microbial properties of composts that suppress damping-off and root rot of creeping bentgrass caused by Pythium graminicola. Appl Environ Microbiol. 1996;62:1550-1557.   DOI
20 Deadman M. Pythium damping off and root-rot. In: Keinath AP, Wintermantel WM, Zitter TA, editors. Compendium of cucurbit diseases and pests. Saint Paul: APS Press; 2017. p. 48-50.
21 Van der Plaats-Niterink AJ. Monograph of the genus Pythium. Stud Mycol. 1981;1:1-242.
22 Andre Levesque C, De Cock A. Molecular phylogeny and taxonomy of the genus Pythium. Mycol Res. 2004;108:1363-1383.   DOI
23 Bala K, Robideau GP, Levesque CA, et al. Phytopythium Abad, de Cock, Bala, Robideau, Lodhi and Levesque, gen. nov. and Phytopythium sindhum Lodhi, Shahzad, and Levesque, sp. nov. Persoonia. 2010;24:136-137.
24 de Cock A, Lodhi AM, Rintoul TL, et al. Phytopythium: molecular phylogeny and systematics. Persoonia. 2015;34:25-39.   DOI
25 Choi Y-J, Beakes G, Glockling S, et al. Towards a universal barcode of oomycetes - a comparison of the cox1 and cox2 loci. Mol Ecol Resour. 2015;15:1275-1288.   DOI
26 Baten MA, Asano T, Motohashi K, et al. Phylogenetic relationships among Phytopythium species and re-evaluation of Phytopythium fagopyri comb. nov., recovered from damped-off buckwheat seedlings in Japan. Mycol Prog. 2014;13:1003.   DOI
27 Jesus ALd, Goncalves DR, Rocha SCO, et al. Morphological and phylogenetic analyses of three Phytopythium species (Peronosporales, Oomycota) from Brazil. Cryptogamie Mycol. 2016;37:117-128.   DOI
28 White T, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand D, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York: Academic Press, Inc; 1990. p. 315-322.
29 Robideau GP, De Cock AW, Coffey MD, et al. DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol Ecol Resour. 2011;11:1002-1011.   DOI
30 Hudspeth DS, Nadler SA, Hudspeth ME. A cox2 molecular phylogeny of the Peronosporomycetes. Mycobiology. 2000;92:674.
31 Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772-780.   DOI
32 Katoh K, Toh H. Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinformatics. 2008;9:212.   DOI
33 Belbahri L, McLeod A, Paul B, et al. Intraspecific and within-isolate sequence variation in the ITS rRNA gene region of Pythium mercuriale sp. nov. (Pythiaceae). FEMS Microbiol Lett. 2008;284:17-27.   DOI
34 Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725-2729.   DOI
35 Matthews VD. Studies on the genus Pythium. Chapel Hill: The University of North Carolina Press; 1931.
36 Middleton JT. The taxonomy, host range and geographic distribution of the genus Pythium. Memoirs Torrey Bot Club. 1943;20:1-171.
37 Long Y, Wei J, Huang C, et al. A new Pythium species isolated from vegetable fields and analysis by rDNA ITS sequence. Mycosystema. 2010;29:795-800.
38 Chenari Bouket A, Arzanlou M, Tojo M, et al. A web-based identification programme for Pythium species. Arch Phytopathol Plant Protect. 2015;48:475-484.   DOI
39 Robideau GP, Rodrigue N, Andre Levesque C. Codon-based phylogenetics introduces novel flagellar gene markers to oomycete systematics. Mol Phylogen Evol. 2014;79:279-291.   DOI
40 Al-Sheikh H, Abdelzaher H. Occurrence, identification and pathogenicity of Pythium aphanidermatum, P. diclinum, P. dissotocum and Pythium "Group P" isolated from Dawmat Al-Jandal Lake, Saudi Arabia. Res J Environ Sci. 2012;6:196-209.   DOI
41 Choudhary CE, Burgos-Garay ML, Moorman GW, et al. Pythium and Phytopythium species in two Pennsylvania greenhouse irrigation water tanks. Plant Dis. 2016;100:926-932.   DOI
42 Shrestha SK, Zhou Y, Lamour K. Oomycetes baited from streams in Tennessee 2010-2012. Mycologia. 2013;105:1516-1523.   DOI
43 Tewoldemedhin YT, Mazzola M, Botha WJ, et al. Characterization of fungi (Fusarium and Rhizoctonia) and oomycetes (Phytophthora and Pythium) associated with apple orchards in South Africa. Eur J Plant Pathol. 2011;130:215-229.   DOI
44 Uzuhashi S, Okada G, Ohkuma M. Four new Pythium species from aquatic environments in Japan. Antonie Van Leeuwenhoek. 2015;107:375-391.   DOI
45 Rodriguez Padron C, Siverio F, Perez-Sierra A, et al. Isolation and pathogenicity of Phytophthora species and Phytopythium vexans recovered from avocado orchards in the Canary Islands, including Phytophthora niederhauserii as a new pathogen of avocado. Phytopathol Mediterr. 2018;57:89-106.
46 Spies CFJ, Mazzola M, McLeod A. Characterisation and detection of Pythium and Phytophthora species associated with grapevines in South Africa. Eur J Plant Pathol. 2011;131:103-119.   DOI
47 Abdelzaher H. Occurrence of damping-off of wheat caused by Pythium diclinum tokunaga in El- Minia, Egypt and its possible control by Gliocladium roseum and Trichoderma harzianum. Arch Phytopathol Plant Protect. 2004;37:147-159.   DOI
48 Radmer L, Anderson G, Malvick DM, et al. Pythium, Phytophthora, and Phytopythium spp. associated with soybean in Minnesota, their relative aggressiveness on soybean and corn, and their sensitivity to seed treatment fungicides. Plant Dis. 2017;101:62-72.   DOI
49 Zitnick-Anderson KK, Nelson BD. Identification and pathogenicity of Pythium on soybean in North Dakota. Plant Dis. 2015;99:31-38.   DOI
50 Cao Y, Li Y, Li J, et al. Rapid and quantitative detection of Pythium inflatum by real-time fluorescence loop-mediated isothermal amplification assay. Eur J Plant Pathol. 2016;144:83-95.   DOI
51 Bala K, Robideau G, Desaulniers N, et al. Taxonomy, DNA barcoding and phylogeny of three new species of Pythium from Canada. Persoonia. 2010;25:22-31.   DOI
52 Czeczuga B, Kiziewicz B, Godlewska A, et al. Further studies on aquatic fungi in the River Narew within the Narew National Park. Rocz Akad Med Bialymst. 2002;47:58-79.
53 Johnson TW. Aquatic fungi of Iceland: Pythium. Mycologia. 1971;63:517-536.   DOI
54 Allain-Boule N, Tweddell R, Mazzola M, et al. Pythium attrantheridium sp. nov.: taxonomy and comparison with related species. Mycol Res. 2004;108:795-805.   DOI
55 Matsiakh I, Oszako T, Kramarets V, et al. Phytophthora and Pythium species detected in rivers of the Polish-Ukrainian border areas. Balt For. 2016;22:230-238.