• 제목/요약/키워드: frequency-to-voltage converter

검색결과 920건 처리시간 0.032초

PI Controlled Active Front End Super-Lift Converter with Ripple Free DC Link for Three Phase Induction Motor Drives

  • Elangovan, P.;Mohanty, Nalin Kant
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.190-204
    • /
    • 2016
  • An active front end (AFE) is required for a three-phase induction motor (IM) fed by a voltage source inverter (VSI), because of the increasing need to derive quality current from the utility end without sacrificing the power factor (PF). This study investigates a proportional-plus-integral (PI) controller based AFE topology that uses a super-lift converter (SLC). The significance of the proposed SLC, which converts rectified AC supply to geometrically proceed ripple-free DC supply, is explained. Variations in several power quality parameters in the intended IM drive for 0% and 100% loading conditions are demonstrated. A simulation is conducted by using MATLAB/Simulink software, and a prototype is built with a field programmable gate array (FPGA) Spartan-6 processor. Simulation results are correlated with the experimental results obtained from a 0.5 HP IM drive prototype with speed feedback and a voltage/frequency (V/f) control strategy. The proposed AFE topology using SLC is suitable for three-phase IM drives, considering the supply end PF, the DC-link voltage and current, the total harmonic distortion (THD) in supply current, and the speed response of IM.

Scheme for Reducing Harmonics in Output Voltage of Modular Multilevel Converters with Offset Voltage Injection

  • Anupom, Devnath;Shin, Dong-Cheol;Lee, Dong-Myung
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1496-1504
    • /
    • 2019
  • This paper proposes a new THD reduction algorithm for modular multilevel converters (MMCs) with offset voltage injection operated in nearest level modulation (NLM). High voltage direct current (HVDC) is actively introduced to the grid connection of offshore wind powers, and this paper deals with a voltage generation technique with an MMC for wind power generation. In the proposed method, third harmonic voltage is added for reducing the THD. The third harmonic voltage is adjusted so that each of the pole voltage magnitudes maintains a constant value with a maximum number of (N+1) levels, where N is the number of sub-modules per arm. By using the proposed method, the THD of the output voltage is mitigated without increasing the switching frequency. In addition, the proposed method has advantageous characteristics such as simple implementation. As a part of this study, this paper compares the THD results of the conventional method and the proposed method with offset voltage injection to reduce the THD. In this paper, simulations have been carried out to verify the effectiveness of the proposed scheme, and the proposed method is implemented by a HILS (Hardware in the Loop Simulation) system. The obtained results show agreement with the simulation results. It is confirmed that the new scheme achieved the maximum level output voltage and improved the THD quality.

ZVS-PWM Boost Chopper-Fed DC-DC Converter with Load-Side Auxiliary Edge Resonant Snubber

  • Ogura K.;Chandhaket S;Nagai S;Ahmed T;Nakaoka M
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.223-226
    • /
    • 2003
  • This paper presents a high-frequency ZVS-PWM boost chopper-fed DC-DC converter with a single active auxiliary edge-resonant snubber which is used for power conditioner such as solar photovoltaic generation and fuel cell generation. The experimental results of boost chopper fed ZVS-PWM DC-DC converter are evaluated. In audition to its switching voltage and current waveforms, and the switching v-i trajectory of the power devices are discussed and compared with the conventional hard switching DC-DC converter treated here. The temperature performance of IGBT module,, efficiency, and EMI noise characteristics of this ZVS-PWM DC-DC converter using IGBTs are measured and evaluated from an experimental point of view.

  • PDF

Asymmetrical 반브리지 컨버터의 이차측 다이오드 전압스트레스저감을 위한 새로운 하이브리드 제어기법 (A new hybrid control scheme for reduction of secondary diode voltage stresses Based on interleaved PFC Asymmetrical Half Bridge Topology)

  • 박남주;이동윤;현동석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1416-1418
    • /
    • 2005
  • This paper presents a new hybrid control method of asymmetrical half-bridge converter(AHBC) with low voltage stresses of the diodes and interleaved PFC(power factor correction). The proposed new control scheme can observe variation of secondary diodes voltage stresses by variation of duty ratio and then decide the control portions which are asymmetrical control and PFM(Pulse Frequency Modulation). Therefore, the proposed control scheme has many advantages such as a low rated voltage of the secondary diodes, low conduction loss according to the low voltage drop and wide zvs range by load variation. Through simulation results, the validity of the proposed control scheme is demonstrated.

  • PDF

함수제어 기법을 이용한 Buck 컨버터 제어 (Control of the Buck Converter using the Function Control Law)

  • 이성백;원영진;김태웅
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제11권6호
    • /
    • pp.81-89
    • /
    • 1997
  • In order to achieve the zero voltage regulation of the output voltage, the function control law will be used. In the previous function control law, only the proportional controller is used and the stability of the closed loop system was not analyzed. In this paper, for the realization of the control law, a new method to retrieve the low frequency component of the inductor voltage is proposed and analyzed. The large signal closed loop characteristics are alos analyzed to ensure the stable operation of the system disturbances. By using the function control law in the control system, the effect of the disturbance of the supply voltage is reduced in 93.3% for the direct dusty ration method. Also, in the effect of the disturbance of the load current, the output voltage has a logn recovery-time and is changed proportionally in the direct duty ratio method, but has stable in the function control law. Finally, the analysis shows that the disturbance of the output voltage being due to the supply voltage variation can be eliminated completely and the closed loop output voltage is insensitive to the disturbance of the load current. Therefore, it is proved that by using the function control law, the switching power supply with zero-voltage regulation output voltage can be realized.

  • PDF

500W급 순수사인파 인버터 설계 (Development of 500W Inverter with Pure Sine Wave Output)

  • 채용웅
    • 한국전자통신학회논문지
    • /
    • 제13권1호
    • /
    • pp.61-68
    • /
    • 2018
  • 논문은 배터리로 구동되는 500W급의 순수사인파 단상인버터에 관한 연구이다. 푸쉬풀 토폴로지를 이용하여 배터리의 전압을 400V로 승압하고, 이 승압된 전압을 H-브리지를 이용하여 상용 220VAC를 출력하는 인버터 구조이다. 이러한 토폴로지를 이용하여 정격입력전압 12VDC에 500W의 인버터를 설계 제작하였다. 그 결과 효율은 일부구간에서 90%를 넘었으나 평균적으로는 약 89.5% 정도의 효율을 나타내고, 출력전압, 주파수 변동 오차 및 THD는 ${\pm}5%$ 미만의 결과를 얻을 수 있었다.

Virtual Flux and Positive-Sequence Power Based Control of Grid-Interfaced Converters Against Unbalanced and Distorted Grid Conditions

  • Tao, Yukun;Tang, Wenhu
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1265-1274
    • /
    • 2018
  • This paper proposes a virtual flux (VF) and positive-sequence power based control strategy to improve the performance of grid-interfaced three-phase voltage source converters against unbalanced and distorted grid conditions. By using a second-order generalized integrator (SOGI) based VF observer, the proposed strategy achieves an AC voltage sensorless and grid frequency adaptive control. Aiming to realize a balanced sinusoidal line current operation, the fundamental positive-sequence component based instantaneous power is utilized as the control variable. Moreover, the fundamental negative-sequence VF feedforward and the harmonic attenuation ability of a sequence component generator are employed to further enhance the unbalance regulation ability and the harmonic tolerance of line currents, respectively. Finally, the proposed scheme is completed by combining the foregoing two elements with a predictive direct power control (PDPC). In order to verify the feasibility and validity of the proposed SOGI-VFPDPC, the scenarios of unbalanced voltage dip, higher harmonic distortion and grid frequency deviation are investigated in simulation and experimental studies. The corresponding results demonstrate that the proposed strategy ensures a balanced sinusoidal line current operation with excellent steady-state and transient behaviors under general grid conditions.

Modeling, Analysis, and Enhanced Control of Modular Multilevel Converters with Asymmetric Arm Impedance for HVDC Applications

  • Dong, Peng;Lyu, Jing;Cai, Xu
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1683-1696
    • /
    • 2018
  • Under the conventional control strategy, the asymmetry of arm impedances may result in the poor operating performance of modular multilevel converters (MMCs). For example, fundamental frequency oscillation and double frequency components may occur in the dc and ac sides, respectively; and submodule (SM) capacitor voltages among the arms may not be balanced. This study presents an enhanced control strategy to deal with these problems. A mathematical model of an MMC with asymmetric arm impedance is first established. The causes for the above phenomena are analyzed on the basis of the model. Subsequently, an enhanced current control with five integrated proportional integral resonant regulators is designed to protect the ac and dc terminal behavior of converters from asymmetric arm impedances. Furthermore, an enhanced capacitor voltage control is designed to balance the capacitor voltage among the arms with high efficiency and to decouple the ac side control, dc side control, and capacitor voltage balance control among the arms. The accuracy of the theoretical analysis and the effectiveness of the proposed enhanced control strategy are verified through simulation and experimental results.

주파수 가변 동기 정류기를 이용한 고효율 MHD 램프 안정기 (The high Efficiency Ballast for MHD Lamp with a Frequency Controlled Synchronous Rectifier)

  • 현병철;이인규;조보형
    • 전력전자학회논문지
    • /
    • 제10권4호
    • /
    • pp.356-362
    • /
    • 2005
  • 본 논문에서는 외부 이그니터가 없는 간단한 고효율 안정기를 만들기 위해 커플 인덕터와 주파수가변. 동기 정류기를 이용한 하프 브리지 방식의 안정기를 제안한다. 램프 점등시 고압을 발생시키기 위해 벅 컨버터 내부의 LC 공진이 사용되었고, 정상상태의 리플을 줄이기 위해 커플 인덕터가 사용되었다. DC/DC컨버터로는 동기형 벅 컨버터가 사용되었다. 안정기의 효율을 높이기 위해 가변 주파수 방식을 제안하였다. 이 방식은 순환 전류와 정전력 동작 하에서 MOSFET 스위치의 턴 오프 손실을 감소 시켜 고정 주파수 방식에 비해 안정기 효율을 약 4$\%$ 향상 시킨다. 회로 구성은 PFC와 안정기 2단으로 구성된다 결과는 실험을 통하여 검증된다.

용량성 압력센서의 집적화에 관한 연구 (Study on Integrated for Capacitive Pressure Sensor)

  • 이윤희
    • 전자공학회논문지T
    • /
    • 제35T권1호
    • /
    • pp.48-58
    • /
    • 1998
  • 본 논문은 센서에서 수반되는 기생용량과 온도 드리프트 및 누설전류의 영향을 경감하기 위한 C-V변환회로 및 C-V변환회로에 관한 실험결과를 제시하고, 또한 논문에서 제안한 센싱 주파수를 기준주파수로 나누어줌으로써 상기 영향들을 줄일 수 있는 새로운 인터페이스 회로를 제시한다 이 회로는 용량비의 출력신호를 디지털 방식으로 16진수로 계수 함으로써 신호의 전송이나 컴퓨터 처리가 쉬울 뿐 아니라 비트수의 증가에 따라 분해 능을 향상시킬 수 있는 이점도 있다. 시작한 인터페이스 회로의 C-V 및 C-F 변환회로에서 전원전압 4.0V, 피이드백 커패시턴스10pF, 압력 0∼10 KPa범위에서 감도는 각각 28 ㎷/㎪·V, -6.6 ㎐/㎩로서 양호하였고, 온도 드리프트 특성은 0.051 %F.S./℃ 및 0.078 %F.S./℃로서 크게 개선되었다.

  • PDF