• Title/Summary/Keyword: frequency-to-voltage converter

Search Result 920, Processing Time 0.025 seconds

Characteristics and Implementation of LCL Type DC-DC Converter for Constant Voltage Power supply (LCL형 전압형 컨버터의 특성 분석 및 구현)

  • Park, Sangeun;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.260-267
    • /
    • 2015
  • An LCL-type isolated dc-dc converter is analyzed, using ac approximation. Analyses to express characteristics on the proposed converter are derived under steady and ideal elements conditions in this paper. The two operating modes can be identified from the analysis results representing different device conduction sequences. This converter is capable of achieving required output voltage(step up or down) operations with inductance ratio while operated at fixed frequency with constant duty ratio-50%. Experimental results show that the designed converter based on Q has zero voltage switching and constant output voltage at different load variations to verify the analysis.

A Novel Soft Switching PWM·PFC AC·DC Boost Converter

  • Sahin, Yakup
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.256-262
    • /
    • 2018
  • This study introduces a novel Soft Switching (SS) Pulse Width Modulated (PWM) AC-DC boost converter. In the proposed converter, the main switch is turned on with Zero Voltage Transition (ZVT) and turned off with Zero Current Transition (ZCT). The main diode is turned on with Zero Voltage Switching (ZVS) and turned off with Zero Current Switching (ZCS). The auxiliary switch is turned on and off with ZCS. All auxiliary semiconductor devices are turned on and off with SS. There is no extra current or voltage stress on the main semiconductor devices. The majority of switching energies are transferred to the output by auxiliary transformer. Thus, the current stress of auxiliary switch is significantly reduced. Besides, the proposed converter has simple structure and ease of control due to common ground. The theoretical analysis of the proposed converter is verified by a prototype with 100 kHz switching frequency and 500 W output power. Furthermore, the efficiency of the proposed converter is 98.9% at nominal output power.

A Common Capacitor Connected LLC Resonant Converter with Auxiliary Switches Operating Over a Wide Output Voltage Control Range (넓은 출력전압 제어범위에서 동작하는 보조스위치 적용 공통커패시터 연결 LLC 공진컨버터)

  • Oh, Jae-Sung;Kim, Min-Ji;Lee, Ji-Cheol;Kim, Eun-Soo;Jeon, Yong-Seog;Kook, Yoon-Sang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.294-302
    • /
    • 2019
  • A capacitor common connected LLC resonant converter with auxiliary switches for a wide output voltage control range is presented in this paper. The proposed converter can be controlled in two ways to achieve a wide output voltage control range of Vo-3Vo. The first control method is performed through pulse width modulation of the auxiliary switches and primary switching devices. The second control method is conducted through frequency modulation of the primary switching devices configured to operate in full-bridge switching modes, when the auxiliary switches are turned off. The feasibility of the proposed converter is verified by the experimental results of a 5 kW prototype.

Start-up Voltage Generator for 250mV Input Boost Converters (250mV 입력 부스트 컨버터를 위한 스타트업 전압 발생기)

  • Yang, Byung-Do
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1155-1161
    • /
    • 2014
  • This paper proposes a start-up voltage generator for reducing the minimum input supply voltage of DC-DC boost converters to 250mV. The proposed start-up voltage generator boosts 250mV input voltage to over 500mV to charge the capacitor for starting the boost converter. After the boost converter operates initially with the supply voltage charged in the capacitor, it uses its boosted output voltage for the supply voltage. Therefore, after the start-up operation, the proposed DC-DC boost converter works as the same as the conventional one. The proposed start-up voltage generator reduces the threshold voltage of the transistors by adjusting the body voltage at a low input voltage. This causes the higher clock frequency and the larger current to a Dickson charge-pump for boosting the input voltage. The proposed start-up voltage generator was implemented with a $0.18{\mu}m$ CMOS process. Its clock frequency and output voltage were 34.5kHz and 522mV at 250mV input voltage, respectively.

A study on the ZVT method of high frequency DC-DC converter (ZVT방식 고주파 DC-DC 콘버어터 개발에 관한 연구)

  • Kye, Moo-Ho;Joe, Kee-Yeon;Hong, Sung-Chul;Kim, Sung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.345-347
    • /
    • 1994
  • It is importent to have the switching frequency of power supplies increase in order to reduce their size and weight. But according to increasing the switching frequency, there are several defacts - that is switching losses, high voltage/current stresses and conduction losses and so on. That's why soft switching method was proposed. This paper presents the simulation and analysis of the new proposed Full bridge Zero-Voltage-Transition PWM DC-DC converter for developing that unit. This circuit doesen't increase the voltage and current stresses of main MOSFET switches. Voltage type quasi-resorent method is applied and expected high effenciency. Switching frequency is 100KHz and main switches are MOSFET.

  • PDF

Interleaved ZVS Resonant Converter with a Parallel-Series Connection

  • Lin, Bor-Ren;Shen, Sin-Jhih
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.528-537
    • /
    • 2012
  • This paper presents an interleaved resonant converter with a parallel-series transformer connection in order to achieve ripple current reduction at the output capacitor, zero voltage turn-on for the active switches, zero current turn-off for the rectifier diodes, less voltage stress on the rectifier diodes, and less current stress on the transformer primary windings. The primary windings of the two transformers are connected in parallel in order to share the input current and to reduce the root-mean-square (rms) current on the primary windings. The secondary windings of the two transformers are connected in series in order to ensure that the transformer primary currents are balanced. A full-wave diode rectifier is used at the output side to clamp the voltage stress of the rectifier diode at the output voltage. Two circuit modules are operated with the interleaved PWM scheme so that the input and output ripple currents are reduced. Based on the resonant behavior, all of the active switches are turned on under zero voltage switching (ZVS), and the rectifier diodes are turned off under zero current switching (ZCS) if the operating switching frequency is less than the series resonant frequency. Finally, experiments with a 1kW prototype are described to verify the effectiveness of the proposed converter.

A Single-Stage AC/DC Converter with Low Voltage Stresses and Reduced Switching Losses

  • Kim, Kyu-Tae;Choi, Woo-Young;Kwon, Jung-Min;Kwon, Bong-Hwan
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.823-834
    • /
    • 2009
  • This paper proposes a high-efficiency single-stage ac/dc converter. The proposed converter features low voltage stresses and reduced switching losses. It operates at the boundary of discontinuous- and continuous-conduction modes by employing variable switching frequency control. The turn-on switching loss of the switch can be reduced by turning it on when the voltage across it is at a minimum. The voltage across the bulk capacitor is independent of the output loads and maintained within the practical range for the universal line input, so the problem of high voltage stress across the bulk capacitor is alleviated. Moreover, the voltage stress of the output diodes is clamped to the output voltage, and the output diodes are turned off at zero-current. Thus, the reverse-recovery related losses of the output diodes are eliminated. The operational principles and circuit analysis are presented. A prototype circuit was built and tested for a 150 W (50V/3A) output power. The experimental results verify the performance of the proposed converter.

Performance Evaluation of GaN-Based Synchronous Boost Converter under Various Output Voltage, Load Current, and Switching Frequency Operations

  • Han, Di;Sarlioglu, Bulent
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1489-1498
    • /
    • 2015
  • Gallium nitride (GaN)-based power switching devices, such as high-electron-mobility transistors (HEMT), provide significant performance improvements in terms of faster switching speed, zero reverse recovery, and lower on-state resistance compared with conventional silicon (Si) metal-oxide-semiconductor field-effect transistors (MOSFET). These benefits of GaN HEMTs further lead to low loss, high switching frequency, and high power density converters. Through simulation and experimentation, this research thoroughly contributes to the understanding of performance characterization including the efficiency, loss distribution, and thermal behavior of a 160-W GaN-based synchronous boost converter under various output voltage, load current, and switching frequency operations, as compared with the state-of-the-art Si technology. Original suggestions on design considerations to optimize the GaN converter performance are also provided.

A Voltage-fed Single-stage PFC Full-bridge Converter with Asymmetric Phase-shifted Control for Battery Chargers

  • Qian, Qinsong;Sun, Weifeng;Zhang, Taizhi;Lu, Shengli
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • A novel voltage-fed single-stage power factor correction (PFC) full-bridge converter based on asymmetric phase-shifted control for battery chargers is proposed in this paper. The attractive feature of the proposed converter is that it can operate in a wide output voltage range without an output low-frequency ripple, which is indispensable in battery charger applications. Meanwhile, the converter can maintain a high power factor and a controllable dc bus voltage over a wide output voltage range. In this paper, the realization of PFC and the operation principle of asymmetric phase-shifted control are given. A small-signal analysis of the proposed single-stage power factor correction (PFC) full-bridge converter is performed. Experimental results obtained from a 1kW experimental prototype are given to validate the feasibility of the proposed converter. The PF is higher than 0.97 over the entire output voltage range with the proposed control strategy.

Design Consideration of Half-Bridge LLC Resonant Converter

  • Choi, Hang-Seok
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.13-20
    • /
    • 2007
  • LLC resonant converters display many advantages over the conventional LC series resonant converter such as narrow frequency variation over wide range of load and input variation and zero voltage switching even under no load conditions. This paper presents analysis and design consideration for the half bridge LLC resonant converter. Using the fundamental approximation, the gain equation is obtained, where the leakage inductance in the transformer secondary side is also considered. Based on the gain equation, the practical design procedure is investigated to optimize the resonant network for a given input/output specifications. The design procedure is verified through an experimental prototype of the 115W half-bridge LLC resonant converter.