• Title/Summary/Keyword: frequency-to-time transformation

Search Result 200, Processing Time 0.026 seconds

A Frequency Domain based Positioning Method using Auto Regressive Modeling in LR-WPAN (주파수 영역상의 AR 모델링 기반 이용한 LR-WPAN용 무선측위기법)

  • Hong, Yun-Gi;Bae, Seung-Chun;Choi, Sung-Soo;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6C
    • /
    • pp.561-570
    • /
    • 2009
  • Ultra-wideband communication systems based on impulse radio have merits that are possible for the high data rate transmission, high resolution ranging are positioning system. Conventionally, in order to accomplish these features, the high-speed ADC (Analog to Digital Convertor) is necessary to apply radio determination system operating in time domain. However, considering low rate - wireless personal area network (LR-WPAN) aims to low-cost hardware implementation, the expensive ADC converting GHz sampling per second is not appropriate. So, this paper introduces a low complex AR (Auto Regressive) model based non-coherent ranging scheme operating in frequency domain with using low-speed ADC utilizing analog Voltage Control Oscillator (VCO) mode for the frequency domain transformation. To verify the superiority of the proposed ranging and location algorithm working in frequency domain, the suggested IEEE 802.15.4a TG channel model is used to exploit affirmative features of the proposed algorithm with conducting the simulation results.

A response surface modelling approach for multi-objective optimization of composite plates

  • Kalita, Kanak;Dey, Partha;Joshi, Milan;Haldar, Salil
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.455-466
    • /
    • 2019
  • Despite the rapid advancement in computing resources, many real-life design and optimization problems in structural engineering involve huge computation costs. To counter such challenges, approximate models are often used as surrogates for the highly accurate but time intensive finite element models. In this paper, surrogates for first-order shear deformation based finite element models are built using a polynomial regression approach. Using statistical techniques like Box-Cox transformation and ANOVA, the effectiveness of the surrogates is enhanced. The accuracy of the surrogate models is evaluated using statistical metrics like $R^2$, $R^2{_{adj}}$, $R^2{_{pred}}$ and $Q^2{_{F3}}$. By combining these surrogates with nature-inspired multi-criteria decision-making algorithms, namely multi-objective genetic algorithm (MOGA) and multi-objective particle swarm optimization (MOPSO), the optimal combination of various design variables to simultaneously maximize fundamental frequency and frequency separation is predicted. It is seen that the proposed approach is simple, effective and good at inexpensively producing a host of optimal solutions.

Analysis of Wave Reflection from an Open-Ended Coaxial Probe Using the FDTD Method (FDTD 방법을 이용한 동축선로 끝단에서의 전파반사 분석)

  • 박기억;손병문;오이석;구연건
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.10
    • /
    • pp.7-12
    • /
    • 1998
  • The wave reflections from several types of open-ended coaxial probes contacted on the various materials have been analyzed precisely by using the finite-difference time-domain(FDTD) technique in this paper. Due to the coordinate transformation from three-dimension to two-dimension, the computation was performed very efficiently. It was found that the reflection from an open-ended coaxial probe reduces as frequency or diameter of a coaxial line increases. The reflections from multi-layered media were also analyzed by the FDTD method. This analysis technique was verified by comparison with measurements and theoretical computations.

  • PDF

Two-Dimensional Modelling of the Cochlear Basilar Membrane (달팽이관 기저막의 이차원적 모델링)

  • 장순석
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.439-446
    • /
    • 1994
  • Two-Dimensional modelling of the Cochlear biomechanics is presented in this paper. The Laplace partial differential equation which represents the fluld mechanics of the Cochlea has been transformed into two-dimensional electrical transmission line. The procedure of this transformation is explained in detail. The comparison between one and two dimensional models is also presented. This electrical modelling of the basilar membrane (BM) is clearly useful for the next approach to the further development of active elements which are essenclal in the producing of the sharp tuning of the BM. This paper shows that two-dimension model is qualitatively better than one-dimensional model both in amplitude and phase responses of the BM displacement. The present model is only for frequency response. However because the model is electrical, the two-dimensional transmission line model can be extended to time response without any difficult.

  • PDF

인공장기

  • 민병구
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.112-113
    • /
    • 1989
  • Two-Dimensional modelling of the Cochlear biomechanics is presented in this paper. The Laplace partial differential equation which represents the fluid mechanics of the Cochlea has been transformed into two-dimensional electrical transmission line. The procedure of this transformation is explained in detail. The comparison between one and two dimensional models is also presented. This electrical modelling of the basilar membrane (BM) is clearly useful for the next approach to the further. Development of active elements which are essential in the producing of the sharp tuning of the BM. This paper shows that two-dimension model is qualitatively better than one-dimensional model both in amplitude and phase responses of the BM displacement. The present model is only for frequency response. However because the model is electrical, the two-dimensional transmission line model can be extended to time response without any difficult.

  • PDF

Flexure Error Analysis of RLG based INS (링레이저 자이로 관성항법시스템의 편향 오차 해석)

  • Kim Kwang-Jin;Yu Myeong-Jong;Park Chan-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.608-613
    • /
    • 2006
  • Any input acceleration that bends RLG dithering axis causes flexure error, which is a source of the noncommutative error that can not be compensated by simply using integrated gyro sensor output. This paper introduces noncommutative error equations that define attitude errors caused by flexure errors. In this paper, flexure error is classified as sensor level error if the sensing axis coincides with the dithering axis and as system level error if the two axes do not coincide. The relationship between gyro output and the rotation vector is introduced and is used to define the coordinate transformation matrix and angular motion. Equations are derived for both sensor level and system level flexure error analysis. These equations show that RLG based INS attitude error caused by flexure is directly proportional to time, amount of input acceleration and the dynamic frequency of the vehicle.

A Study of Muscle Fatigue in Lumbar and Abdominal Muscles in Patients with Chronic Low Back Pain by Electromyographic Power Spectral Analysis (근전도 스펙트럼 분석을 이용한 만성 요통 환자의 요부근육과 복부근육의 피로도 분석)

  • Nam, Ki-Seok;Lee, Young-Hee;Yi, Chung-Hwi;Cho, Sang-Hyun
    • Physical Therapy Korea
    • /
    • v.6 no.2
    • /
    • pp.16-31
    • /
    • 1999
  • The purpose of this study was to assess the fatigue in lumbar and abdominal muscles in patients with chronic low back pain compared with normal subjects using spectral analysis with mean power frequency and median power frequency. The experimental group consisted of twenty subjects who had experienced chronic low back pain for over one year after the onset day. A control group consisted of twenty normal subjects with no history of low back pain. All subjects stood in an apparatus to perform sustained contraction in the lumbar and abdominal muscles for 30 seconds with 60% maximal voluntary isometric contraction (MVIC). The resulting electromyographic (EMG) recorded time serial data were transformed into frequency serial data by Fast Fourier Transformation (FFT). The results were as follows: 1) lumbar muscles measured, the frequency change ratio of both median power frequency and mean power frequency was significantly greater for experimental group compared with control group group (p<0.05). In measured two abdominal muscles (inferior rectus abdominis, obliquus externus abdominis) except superior rectus abdominis, the frequency change ratio of both median power frequency and mean power frequency was significantly greater for experimental group compared with control group (p<0.05). 2) In all three (longissimus thoracis, iliocostalis lumborum, multifidus) lumbar muscles measured, the initial frequency value of both median power frequency and mean power frequency was significantly lower for the experimental group compared with the control group (p<0.05). In the two (inferior rectus abdominis, obliquus externus abdominis) abdominal muscles measured (superior rectus abdominis not included), the initial frequency value of both median power frequency and mean power frequency was significantly lower for the experimental group compared with the control group (p<0.05). These results suggest that in patients with chronic low back pain there is a trend for more fatigue to occur in both lumbar and abdominal muscles than in the normal control group. This would seem to suggest that in treatment programs for patients with chronic low back pain, improvement of endurance in all trunk muscles should be considered.

  • PDF

Thermal Sensitivity of the Bean Curd by Ultrasonic Irradiation (초음파 조사에 의한 두부의 열 감도)

  • 조문재;윤용현;부유천;김용태
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.7
    • /
    • pp.503-513
    • /
    • 2004
  • In this paper, the thermal sensitivity, i .e. the temperature rise per unit acoustic power, was newly defined and proposed as a performance parameter of a tissue mimicking material. Eatable tofu (bean curd) manufactured by a factory was selected as a sample material for the experiment. The temperature changes were measured not only with the variation of ultrasonic irradiation time, acoustic power, depth from the sample surface. and the distance from the source transducer while adjusting the frequency to 8 MHz but also with the variation of frequency while acoustic power. depth from the sample surface. and the distance from the source transducer keeping constant. As a result of a consideration for the transformation of the measured temperature changes to thermal sensitivities. the thermal sensitivity was found to be sufficient to use as a Performance parameter for tissue mimicking material. The tofu as a tissue mimicking material showed the maximum thermal sensitivity at 10 MHz, as is a significant result to imply the possibility that the thermal sensitivity of real human tissue strong1y depends on the frequency.

A Study on Characteristics of the Transmission Line Employing Periodically Perforated Ground Metal on GaAs MMIC and Its Application to Highly Miniaturized On-chip Impedance Transformer Employing Coplanar Waveguide (GaAs MMIC상에서 주기적으로 천공된 홀을 가지는 접지 금속막 구조를 이용한 전송선로 특성연구 및 코프레너 선로를 이용한 온칩 초소형 임피던스 변환기에의 응용)

  • Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1248-1256
    • /
    • 2008
  • In this paper, basic characteristics of transmission line employing PPGM (periodically perforated ground metal) were investigated using theoretical and experimental analysis.According to the results, unlike the conventional PBG (photonic band gap) structures, the characteristic impedance of the transmission line employing PPGM structure showed a real value, which exhibited a very small dependency on frequency. The transmission line employing PPGM structure showed a loss (per quarter wave length) higher by $0.1{\sim}0.2\;dB$ than the conventional microstrip line. According to the investigation of the dependency of RF characteristic on ground condition, the RF characteristic of the transmission line employing PPGM structure was hardly affected by the ground condition in the frequency lower than Ku band, but fairly affected in the frequency higher than Ku band, which indicated that coplanar waveguide employing PPGM structure was optimal for RF characteristic and reduction of size. Considering above results, impedance transformer was developed using coplanar waveguide with PPGM structure for the first time, and good RF characteristics were observed from the impedance transformer. In case that {\lambda}/4$ impedance transformer with a center frequency of 9 GHz was fabricated for a impedance transformation from 20 to10 {\Omega}$, the line width and length were 20 and $500\;{\mu}m$, respectively, and its size was only 0.64 % of the impedance transformer fabricated with conventional microstrip lines. Above results indicate that the transmission line employing PPGM is a promising candidate for a development of matching and passive elements on MMIC.

Hybrid perfectly-matched-layers for transient simulation of scalar elastic waves

  • Pakravan, Alireza;Kang, Jun Won;Newtson, Craig M.;Kallivokas, Loukas F.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.4
    • /
    • pp.685-705
    • /
    • 2014
  • This paper presents a new formulation for forward scalar wave simulations in semi-infinite media. Perfectly-Matched-Layers (PMLs) are used as a wave absorbing boundary layer to surround a finite computational domain truncated from the semi-infinite domain. In this work, a hybrid formulation was developed for the simulation of scalar wave motion in two-dimensional PML-truncated domains. In this formulation, displacements and stresses are considered as unknowns in the PML domain, while only displacements are considered to be unknowns in the interior domain. This formulation reduces computational cost compared to fully-mixed formulations. To obtain governing wave equations in the PML region, complex coordinate stretching transformation was introduced to equilibrium, constitutive, and compatibility equations in the frequency domain. Then, equations were converted back to the time-domain using the inverse Fourier transform. The resulting equations are mixed (contain both displacements and stresses), and are coupled with the displacement-only equation in the regular domain. The Newmark method was used for the time integration of the semi-discrete equations.