• Title/Summary/Keyword: frequency-to-time transformation

Search Result 201, Processing Time 0.034 seconds

Studies on the Factors Influencing the Transformation in Escherichia with pBR322 DNA (Escherichia coli의 pBR322 DNA 형질전환에 관여하는 인자에 관한 연구)

  • Yoo, Han-sang;Mah, Jum-sool
    • Korean Journal of Veterinary Research
    • /
    • v.24 no.1
    • /
    • pp.40-49
    • /
    • 1984
  • To investigate the factors influencing the artifical transformation in Escherichia coli, E. coli C600 was transformed by pBR322 DNA with tetracycline and ampicillin resistant gene purified by CsCl-Etbr equilibrium density gradient centrifugation from E.coli HB 101. The influencing factors in the transformation such as concentration of calcium chloride, time of ice incubation, temperature and time of heat shock, time of gene expression, effects of plasmid DNA concentration and adding time were examined in these experiments. The results obtained were as follows; 1. The highest transformation frequency was observed in the treatments of 100 mM $CaCl_2$ before heat shock and the treatment of $CaCl_2$ was essential step in the process of E. coli transformation. 2. The highest transformation frequency was observed in the treatment of heat shock at $42^{\circ}C$ for 4 min. or $37^{\circ}C$ for 6 min., but the prolonged heat shock resulted a decreased transformation frequency. 3. Treatments of ice incubation at $0^{\circ}C$ for 45 min. before heat stocks or at $0^{\circ}C$ for 30min. after heat shock resulted an increased transformation frequency. 4. There was a linear relationship between DNA concentration and transformation frequency at the concentration of $8{\times}10^3$ recipient cells. The highest transformation frequency reached in carte of 7 mcg of donor DNA, but above 1 mcg of DNA concentration, transformation frequency was not remarkably increased. Addition of donor DNA just after the treatment of $CaCl_2$ was the best. 5. The best condition of gene expression at $37^{\circ}C$ were 40min. for TC-resistant gene and 100min. for AP-resistant gene. TC-resistant gene was higher in the transformation frequency and faster in the gene expression time than AP-resistant gene. In these results, the best conditions for the transformation of E. coli C 600 with pBR322 DNA were: treatment with 100mM $CaCl_2$, ice incubation at $0^{\circ}C$ for 45 min, heat shock at $42^{\circ}C$ for 4 min., 30 min. of ice incubation and incubation at $37^{\circ}C$ for 100min. for gene expression in that order.

  • PDF

A High-Speed LSF Transformation Algorithm for CELP Vocoders

  • Min, So-Yeon;Bae, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1E
    • /
    • pp.20-24
    • /
    • 2001
  • We propose the computation reduction method of real root method that is mainly used in the CELP(Code Excited Linear Prediction) vocoder. The real root method is that if polynomial equations have the real roots, we are able to find those and transform them into LSF[1]. However, this method takes much time to compute, because the root searching is processed sequentially in frequency region. But, the important characteristic of LSF is that most of coefficients are occurred in specific frequency region. So, the searching frequency region is ordered by each coefficient's distribution. And coefficients are searched in ordered frequency region. Transformation time can be reduced by this method than the sequential searching method in frequency region. When we compare this proposed method with the conventional real root method, the experimental result is that the searching time was reduced about 46% in average.

  • PDF

Frequency Characteristics of the Synchronous-Frame Based D-Q Methods for Active Power Filters

  • Wang, Xiaoyu;Liu, Jinjun;Hu, Jinku;Meng, Yuji;Yuan, Chang
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.91-100
    • /
    • 2008
  • The d-q harmonic detecting algorithms are dominant methods to generate current references for active power filters (APF). They are often implemented in the synchronous frame and time domain. This paper researches the frequency characteristics of d-q synchronous transformations, which are closely related to the analysis and design issues of control system. Intuitively, the synchronous transformation is explained with amplitude modulation (AM) in this paper. Then, the synchronous filter is proven to be a time-invariant and linear system, and its transfer function matrix is derived in the stationary frames. These frequency-domain models imply that the synchronous transformation has an equivalent effect of frequency transformation. It is because of this feature, the d-q method achieves band-pass characteristics with the low pass filters in the synchronous frame at run time. To simplify these analytical models, an instantaneous positive-negative sequence frame is proposed as expansion of traditional symmetrical components theory. Furthermore, the synchronous filter is compared with the traditional bind-pass filters based on these frequency-domain analytical models. The d-q harmonic detection methods are also improved to eliminate the inherent coupling effect of synchronous transformation. Typical examples are given to verify previous analysis and comparison. Simulation and experimental results are also provided for verification.

Frequency-to-time Transformation by a Diffusion Expansion Method (분산 전개법에 의한 주파수-시간 영역 변환)

  • Cho, In-Ky;Kim, Rae-Yeong;Ko, Kwang-Beom;You, Young-June
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.3
    • /
    • pp.129-136
    • /
    • 2014
  • Electromagnetic (EM) methods are generally divided into frequency-domain EM (FDEM) and time-domain EM (TDEM) methods, depending on the source waveform. The FDEM and TDEM fields are mathematically related by the Fourier transformation, and the TDEM field can thus be obtained as the Fourier transformation of FDEM data. For modeling in time-domain, we can use fast frequency-domain modeling codes and then convert the results to the time domain with a suitable numerical method. Thus, frequency-to-time transformations are of interest to EM methods, which is generally attained through fast Fourier transform. However, faster frequency-to-time transformation is required for the 3D inversion of TDEM data or for the processing of vast air-borne TDEM data. The diffusion expansion method (DEM) is one of smart frequency-to-time transformation methods. In DEM, the EM field is expanded into a sequence of diffusion functions with a known frequency dependence, but with unknown diffusion-times that must be chosen based on the data to be transformed. Especially, accuracy of DEM is sensitive to the diffusion-time. In this study, we developed a method to determine the optimum range of diffusion-time values, minimizing the RMS error of the frequency-domain data approximated by the diffusion expansion. We confirmed that this method produces accurate results over a wider time range for a homogeneous half-space and two-layered model.

Mechanical and Elastic Wave Properties of STS316L with Different Reverse Transformation Temperature and Time (역변태 온도 및 시간이 다른 STS316L의 기계적 및 탄성파 특성)

  • Do, Jae-Yoon;Tak, Young-Joon;Shin, Ki-Hang;Nam, Ki-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1055-1062
    • /
    • 2022
  • In this study, the mechanical properties of 80% cold-rolled austenitic 316L stainless steel were evaluated using specimens subjected to reverse transformation at 500-750℃ for 20 minutes and reverse transformation at 700℃ for 2-60 minutes. Also, for the elastic wave obtained from the tensile test, the dominant frequency according to the reverse transformation condition was investigated by time-frequency analysis. The SEM image of the 80% cold-rolled material was transformed into martensite and showed line and cross shapes. The TEM image showed that line shapes were shown at the grain, and grain boundary of martensite. The higher the heat treatment temperature and the longer time, the larger the grain. Tensile strength decreased as the heat treatment temperature and time increased, but elongation increased. Hardness was proportional to tensile strength. This is because the grain with different directions showed the same direction due to reverse transformation. The dominant frequency was decreased and then increased as the temperature and time increased. This is because the direction of the grain is different at a low temperature and the same direction is shown at a high temperature.

Detection of Leakage Point via Frequency Analysis of a Pipeline Flow

  • Kim, Sanghyun;Wansuk Yoo;Injoon Kang
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.232-238
    • /
    • 2001
  • Fast Fourier Transformation is employed to convert the head variation of a pipeline in the time domain to the amplitude of the frequency domain. Applying method of characteristics to a pipeline provides a significant frequency range for a surge introduced from the valve modulation. Inverse Fast Fourier Transformation and a Finite Impulse Response Filter can be used to remove any possible noise existing from the significant frequency range of an unsteady condition. A filtered signal shows higher potential for the inverse calculation of leakage detection than the noise-added signal does. The respective performances of Inverse Fast Fourier Transformation and a Finite Impulse Response Filter are compared in terms of leakage detection capability. Characteristics of the frequency range for multiple leakages were investigated to validate the effectiveness of the noise control method in the frequency domain.

  • PDF

Eigen-Analysis of Engine mount system with Hydraulic Mount (하이드로릭 마운트가 장착된 지지계의 고유치 해석)

  • 고강호;김영호
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.800-805
    • /
    • 2000
  • To determine the modal matrix and modal frequency of engine mount system, we most solve so-called eigen-value problem. However eigen-value problem of engine mount system with hydraulic mount can not be solved by general eigne-analysis algorithm because the properties of hydraulic mount vary with frequency. so in this paper the method for modal analysis of rigid body motions of an engine supported by hydraulic mount is proposed. Natural frequencies and mode shapes of this nonlinear system are obtained by using complex exponential method and Laplace transformation method. In time domain, impulse response functions are calculated by (two-sided) discrete inverse Fourier Transformation of forced frequency response functions achieved by Laplace transformation of the differential equation of motion. Considering the fact that frequency response functions synthesized by modal parameters form proposed method are in good agreement with original FRFs, it is proved that the proposed method is very efficient and useful for the analysis of eigne-value problem of hydraulic engine mount system.

  • PDF

Modeling of Dynamic Loads Due to Pedestrian Walking

  • Kim, Gee-Cheol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.1 s.15
    • /
    • pp.81-89
    • /
    • 2005
  • Walking loads are influenced by various parameters so that they need to be measured considering such parameters. Walking frequency(rate) is experimentally investigated as the most important parameter in determining the walking load expressed with dynamic load factor. This study focuses on the derivation of continuous walking load-time functions at any walking frequency ranging from 1.30Hz to 2.70Hz. Experiments were conducted to obtain time-histories of walking loads at the increment of 0.1Hz, which are decomposed into harmonic loads by the Fourier transformation. The polynomial load-time functions are proposed representing the relationship between harmonic coefficients and walking frequencies, thereby easily formulating walking load-time histories for dynamic load factor with various walking frequencies.

  • PDF

Effective time-frequency characterization of Lamb wave dispersion in plate-like structures with non-reflecting boundaries

  • Wang, Zijian;Qiao, Pizhong;Shi, Binkai
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.195-205
    • /
    • 2018
  • Research on Lamb wave-based damage identification in plate-like structures depends on precise knowledge of dispersive wave velocity. However, boundary reflections with the same frequency of interest and greater amplitude contaminate direct waves and thus compromise measurement of Lamb wave dispersion in different materials. In this study, non-reflecting boundaries were proposed in both numerical and experimental cases to facilitate time-frequency characterization of Lamb wave dispersion. First, the Lamb wave equations in isotropic and laminated materials were analytically solved. Second, the non-reflecting boundaries were used as a series of frames with gradually increased damping coefficients in finite element models to absorb waves at boundaries while avoiding wave reflections due to abrupt property changes of each frame. Third, damping clay was sealed at plate edges to reduce the boundary reflection in experimental test. Finally, the direct waves were subjected to the slant-stack and short-time Fourier transformations to calculate the dispersion curves of phase and group velocities, respectively. Both the numerical and experimental results suggest that the boundary reflections are effectively alleviated, and the dispersion curves generated by the time-frequency analysis are consistent with the analytical solutions, demonstrating that the combination of non-reflecting boundary and time-frequency analysis is a feasible and reliable scheme for characterizing Lamb wave dispersion in plate-like structures.

Identification of Fish Species using Affine Transformation and Principal Component Analysis of Time-Frequency Images of Broadband Acoustic Echoes from Individual Live Fish (활어 개체어의 광대역 음향산란신호에 대한 시간-주파수 이미지의 어파인 변환과 주성분 분석을 이용한 어종식별)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.2
    • /
    • pp.195-206
    • /
    • 2017
  • Joint time-frequency images of the broadband echo signals of six fish species were obtained using the smoothed pseudo-Wigner-Ville distribution in controlled environments. Affine transformation and principal component analysis were used to obtain eigenimages that provided species-specific acoustic features for each of the six fish species. The echo images of an unknown fish species, acquired in real time and in a fully automated fashion, were identified by finding the smallest Euclidean or Mahalanobis distance between each combination of weight matrices of the test image of the fish species to be identified and of the eigenimage classes of each of six fish species in the training set. The experimental results showed that the Mahalanobis classifier performed better than the Euclidean classifier in identifying both single- and mixed-species groups of all species assessed.