• Title/Summary/Keyword: frequency-domain diffuse optical tomography

Search Result 3, Processing Time 0.019 seconds

Frequency-domain Diffuse Optical Tomography System Adopting Lock-in Amplifier (Lock-in 증폭기를 채용한 주파수영역 확산 광단층촬영 시스템)

  • Jun, Young-Sik;Baek, Woon-Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.3
    • /
    • pp.134-140
    • /
    • 2011
  • In this paper, we developed a frequency-domain diffuse optical tomography(DOT) system for non-invasively imaging in vivo. The system uses near-infrared(NIR) light sources and detectors for which the photon propagation in human tissue is dominated by scattering rather than by absorption. We present the experimental reconstruction images of absorption and scattering coefficients using a liquid tissue phantom, and we obtain the location and shape of an anomaly which has different optical properties than the phantom.

Optical Property Measurements of Optical Phantoms and Honan Tissues Using Frequency-Domain Diffuse Optical Tomography (주파수 영역 확산광 단층촬영 장치를 이용한 광 팬텀 및 인체조직의 광 계수 측정)

  • Ho, Dong-Su;Kwon, Ki-Woon;Eom, Gi-Yun;Lee, Seung-Duk;Kim, Beop-Min
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.229-234
    • /
    • 2007
  • Diffuse optical tomography (DOT) is a relatively new medical imaging modality which uses near infrared light to image large-sized tissues noninvasively. We constructed a frequency-domain DOT system to measure the optical properties of optical phantoms and human tissues. The FD-DOT uses the intensity-modulated infrared light source that illuminates the biological tissues. The phase shift and modulation changes at each detector site are separately processed to measure the optical properties. The absorption and scattering coefficients are separately estimated using inverse algorithms.