• Title/Summary/Keyword: frequency-domain and time-domain analysis

Search Result 988, Processing Time 0.028 seconds

Characteristics of Partial Discharges Signals Utilizing Method of Wavelet Transform Denoising Process (웨이브렛 변환의 노이즈 제거기법에 의한 부분방전신호 특성)

  • 이현동;이광식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.4
    • /
    • pp.62-68
    • /
    • 2001
  • In this paper, As the wavelet transform has the properties of multi-resolution analysis and time-frequency domain localization, application of wavelet transform is used at partial discharge(PD) signal detected by electrical detection method to extract PD signal's various frequency component and its time domain. therefore we can analyzed PD signal's time-frequency domain simultaneously. On the other hand, using wavelet transform denoising process, included noise signal in detected PD signal is well eliminated. we can propose the true shine of PD signal.

  • PDF

Analysis of Bi-directional Filtered-x Least Mean Square Algorithm (양방향 Filtered-x 최소 평균 제곱 알고리듬에 대한 해석)

  • Kwon, Oh Sang
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.4
    • /
    • pp.133-142
    • /
    • 2014
  • The least mean square(LMS) algorithm has been popular owing to its simplicity, stability, and availability to implement. But it inherently has a problem of slow convergence speed, and the presence of a transfer function in the secondary path following the adaptive controller and the error path has been shown to generally degrade the stability and the performance of the LMS algorithm in applications of acoustical noise control. In general, in order to solve these problems, the filtered-x LMS (FX-LMS) type algorithms can be used and the bi-directional Filtered-x LMS(BFXLMS) algorithm is very attractive among them, which increase the convergence speed and the performance of the controller with nearly equivalent computation complexity. In this paper, a mathematical analysis for the BFXLMS algorithm is presented. In terms of view points of time domain, frequency domain, and stochastic domain, the characteristics and stabilities of algorithm is accurately analyzed.

Aeroelastic instability of long-span bridges: contributions to the analysis in frequency and time domains

  • Sepe, Vincenzo;Caracoglia, Luca;D'Asdia, Piero
    • Wind and Structures
    • /
    • v.3 no.1
    • /
    • pp.41-58
    • /
    • 2000
  • According to research currently developed by several authors (including the present ones) a multimode approach to the aeroelastic instability can be appropriate for suspension bridges with very long span and so with close natural frequencies. Extending that research, this paper deals in particular with: i) the role of along-wind modes, underlined also by means of the flutter mode representation; ii) the effects of a variation of the mean wind speed along the span. A characterisation of the response in the time domain by means of an energetic approach is also discussed.

Transient Responses of an Airplane Taking off from and Landing on a Very Large Floating Structure in Regular Waves (규칙파중 항공기 이.착륙시 초대형 부유식 해양구조물의 천이 응답 해석)

  • 신현경;이호영;임춘규;강점문;윤명철
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.26-30
    • /
    • 2001
  • Up to now, Most studies of hydroelasticity are about frequency domain analysis. Those aren't suited for analysis of the landing take-off, and dropping of aircraft on a structure. So, the concern of this paper is the transient behavior of a VLFS subjected to dynamic load, induced by airplane landing and take-off. To predict the added mass, damping coefficient, and wave exciting force, the source-dipole distribution method was used in the frequency domain. The responses are accomplished by using the FEM scheme. A time domain analysis method is based on the Newmark β method to pursue the time step procedure, taking advantage of memory effect function for hydrodynamic effects.

  • PDF

Dynamic Wave Response Analysis of Floating Bodies in the Time-domain

  • Watanabe, Eiichi;Utsunomiya, Tomoaki;Yoshizawa, Nao
    • Computational Structural Engineering : An International Journal
    • /
    • v.2 no.1
    • /
    • pp.43-50
    • /
    • 2002
  • This paper presents a method to predict dynamic responses of floating bodies in the time domain. Because of the frequency-dependence of the radiation wave forces, the memory effect must be taken into account when the responses are evaluated in the time domain. Although the formulations firstly developed by Cummins (1962) have been well-known for this purpose, the effective numerical procedure has not been established yet. This study employs FFT (Fast Fourier Transform) algorithm to evaluate the memory effect function, and the equations of motion of an integro-differential type are solved by Newmark-β method. Numerical examples for a truncated circular cylinder have indicated the effectiveness of the proposed numerical procedure.

  • PDF

Evaluation of bonding state of shotcrete lining using nondestructive testing methods - experimental analysis (비파괴 시험 기법을 이용한 숏크리트 배면 접착상태 평가에 관한 실험적 연구)

  • Song, Ki-Il;Cho, Gye-Chun;Chang, Seok-Bue;Hong, Eun-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.71-83
    • /
    • 2009
  • Shotcrete is an important primary support for tunnelling in rock. The quality control of shotcrete is a core issue in the safe construction and maintenance of tunnels. Although shotcrete may be applied well initially onto excavated rock surfaces, it is affected by blasting, rock deformation and shrinkage and can debond from the excavated surface, causing problems such as corrosion, buckling, fracturing and the creation of internal voids. This study suggests an effective non-destructive evaluation method of the tunnel shotcrete bonding state applied onto hard rocks using the impact-echo (IE) method and ground penetration radar (GPR). To verify previous numerical simulation results, experimental study carried out. Generally, the bonding state of shotcrete can be classified into void, debonded, and fully bonded. In the laboratory, three different bonding conditions were modeled. The signals obtained from the experimental IE tests were analyzed at the time domain, frequency domain, and time-frequency domain (i.e., the Short- Time Fourier transform). For all cases in the analyses, the experimental test results were in good agreement with the previous numerical simulation results, verifying this approach. Both the numerical and experimental results suggest that the bonding state of shotcrete can be evaluated through changes in the resonance frequency and geometric damping ratio in a frequency domain analysis, and through changes in the contour shape and correlation coefficient in a time-frequency analysis: as the bonding state worsens in hard rock condition, the autospectral density increases, the geometric damping ratio decreases, and the contour shape in the time-frequency domain has a long tail parallel to the time axis. The correlation coefficient can be effectively applied for a quantitative evaluation of bonding state of tunnel shotcrete. Finally, the bonding state of shotcrete can be successfully evaluated based on the process suggested in this study.

Noise elimination of PD signal using Wavelet Transform (웨이브렛 변환을 이용한 부분방전신호의 잡음제거 특성)

  • Lee, Hyun-Dong;Ju, Jae-Hyun;Kim, Ki-Chai;Park, Won-Zoo;Lee, Kwang-Sik;Lee, Dong-In
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1679-1681
    • /
    • 2001
  • In this paper, As the wavelet transform has the properties of multi-resolution analysis and time-frequency domain localization, application of wavelet transform is used at partial discharge(PD) signal detected by electromagnetic wave detection method to extract PD signal's various frequency component and its time domain. therefore we can analyzed PD signal's time-frequency domain simultaneously. On the other hand, using wavelet transform denoising process, inclued noise signal in detected PD signal is well elimiated. we can propose the true shape of PD signal.

  • PDF

Time Domain Analysis of Nonlinear Wave-Making Problems by a Submerged Sphere Oscillating with Forward Speed (전진 동요하는 잠수구에 의한 비선형 조파문제의 시간영역 해석)

  • Ha, Y.R.;Bae, S.Y.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.75-82
    • /
    • 2010
  • In this study, the topics for free-surface wave simulation, nonlinear hydrodynamic force, and the critical resonance frequency of so-called ${\tau}=U{\omega}/g$=1/4 are discussed. A high-order spectral/boundary element method is newly adapted as an efficient numerical tool. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated and hydrodynamic forces also can be calculated in time domain. In this method, the velocity potential is expressed as the sum of surface potential and body potential. Then, surface potential is solved by using the high-order spectral method and body potential is solved by using the high-order boundary element method. By the combination of these two methods, the wave-making problems by a submerged sphere oscillating with forward speed under the free-surface are solved in time domain.

Analysis of Crosstalk between PCB Traces in Frequency and Time Domain (주파수 및 시간 영역에서 인쇄회로기판 선로의 혼신 해석)

  • 이애경;심환우;조광윤
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.5
    • /
    • pp.430-439
    • /
    • 1996
  • In printed circuit board (PCB) design, it is necessary to predict the crosstalk effect among traces on the circuitary behavior. In this paper, crosstalk between parallel or crossing traces was treated by the finite difference time domain (FDTD) method. They are the typical models of PCB traces and the crosstalk is a major contributor in the creation of electromagnetic interference (EMI). The crosstalk effect was computed for the variation of distance spacing and length of parallel traces and crossing traces. The results in time and frequency domain are discussed and compared with those using MDS(microwave design system) and HFSS(high frequency structure simulator). The comparison shows that the FDTD method can be of wide application in analysis model and save the time required for calculation.

  • PDF

Extraction of Cole-Cole Parameters from Time-domain Induced Polarization Data (시간영역 유도분극 자료로부터 Cole-Cole 변수 산출)

  • Kim, Yeon-Jung;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.164-170
    • /
    • 2021
  • Frequency-domain and time-domain induced polarization methods can provide spectral information about subsurface media. Analysis of spectral characteristics has been studied mainly in the frequency-domain, however, time-domain induced polarization research has recently become popular. In this study, assuming a homogeneous half-space model, an inversion method was developed to extract Cole-Cole parameters from the measured secondary potential or electrical resistivity. Since the Cole-Cole parameters of chargeability, time constant, and frequency index are not independent of each other, various problems, such as slow convergence rate, initial model problem, local minimum problem, and divergence, frequently occur when conventional nonlinear inversion is applied. In this study, we developed an effective inversion method using the initial model close to the true model by introducing a grid search method. Finally, the validity of the developed inversion method was verified using inversion experiments.