• Title/Summary/Keyword: frequency synthesis

Search Result 614, Processing Time 0.025 seconds

Reaction Monitoring of Imine Synthesis Using Raman Spectroscopy

  • Lee, Moon-Kwon;Kim, Hye-Sung;Rhee, Hak-June;Choo, Jae-Bum
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.2
    • /
    • pp.205-208
    • /
    • 2003
  • Laser-induced Raman spectroscopy has been utilized to demonstrate its feasibility for studying the kinetics of imine formation in chloroform solvent. The imine formation, by the nucleophilic addition of primary amine to the carbonyl group of ketone, has been monitored at ten minute intervals for eight hours. The intensity of the C=O stretching mode at 1684 $cm^{-1}$ was measured to determine the rate constant of the reaction. In order to correct the sample-to-sample fluctuations in Raman peak area, this peak was normalized to the C-Cl bending peak at 666 $cm^{-1}$. By the peak area change during the course of reaction, the second order rates at three different temperatures have been determined. The substituent effects on the π conjugations of imine product have also been investigated. On the basis of Raman frequency shifts, the delocalization properties of the aromatic system modified by substitution of a hydrogen atom with -Cl and $-CH_3O$ groups could be clearly understood.

Synthetic Aperture Processing in Beamspace Using Twin-line Array (이중 선 배열을 이용한 빔 영역 합성 처리)

  • 양인식;김기만;윤대희;오원천;도경철
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.82-86
    • /
    • 2001
  • In this Paper, we Propose synthetic aperture technique for twin-line may. Sin91e-line way is required long aperture size in order to achieve high SNR and angular resolution in shallow water Ultra low frequency signal from far-field has left-right ambiguity at sing1e-line array. To resolve these Problems, we'd like to adopt the synthetic aperture technique to twin-line array. The synthetic aperture method adopts coherent processing of sub-aperture signals at successive tine intervals in the beam domain. The proposed method shows low nile error and improved angular resolution. In simulation result, average sidelobe level is reduced about 7〔dB〕when the array Peformed 5-synthesis.

  • PDF

Shock Response Prediction of a Low Altitude Earth Observation Satellite During Launch Vehicle Separation

  • Lee, Dae-Oen;Han, Jae-Hung;Jang, Hae-Won;Woo, Sung-Hyun;Kim, Kyung-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.49-57
    • /
    • 2010
  • Several pyrotechnic devices are employed over the course of satellite's missions, generally for the separation of structural subsystems and deployment of appendages. Firing of pyrotechnic devices results in impulsive loads characterized by high peak acceleration and high frequency content which can cause failures of various flight hardware elements and small components. Thus, accurate prediction of acceleration level in various components of spacecraft due to pyrotechnic devices is important. In this paper, two methods for pyroshock prediction, an empirical model and statistical energy analysis in conjunction with virtual mode synthesis, are applied to predict shock response of a low altitude earth observation satellite during launch vehicle separation. The predicted results are then evaluated through comparison with the shock test results.

Control of One Dimensional Inverse Scattering Pattern and Its Applications (일차원 역산란 패턴 제어와 그 응용)

  • 최종인;박의준
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.2
    • /
    • pp.291-301
    • /
    • 1999
  • A method for the synthesis of one-dimensional nonlinear distribution function is presented for the desired inverse scattering pattern. This method is based on the inverse transform of the solution of the Riccati equation derived from one-dimensional inverse scattering problem. Since the solution is analogous to the array factor or normalized space factor in collinear array antenna, the synthesis method for field pattern is applied for the construction of the involved line-source nonlinear distribution function. The suggested method is carried out under the optimization process, and is numerically verified by synthesizing the dispersive transmission line profile within the specified frequency band and control of scattered field on resistive strip.

  • PDF

A Study on the Efficient Synthesis of Nonuniform Transmission Line Filters using Zakharov-Shabat Coupled Mode Equation (Zakharov-Shabat 결합모드 방정식을 사용한 불균일 전송선로 필터의 효율적인 합성에 관한 연구)

  • 장완규;박의준
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.12
    • /
    • pp.1283-1291
    • /
    • 2003
  • Nonuniform transmission lines(NTLs) with the desired frequency response can be realized by synthesizing the potential from the coupled mode Zakharov-Shabat(ZS) equation in the one-dimensional inverse scattering problem. In this study, an efficient synthesis method using the ZS equations is presented for NTLs with arbitrarily specified reflection coefficients which take the restricted potential. This method lessens the line length which plague conventional design schemes using specific windows for reflection coefficients. Furthermore solving the ZS inverse transform problem is simplified by adopting the successive approach instead of the conventional iterative method. The proposed method is compared with the conventional method using specific windows by applying to design of dispersive NTL filters, and verified by two-port analysis through the chain matrix.

Growth Mechanism of Self-Catalytic Ga2O3 Nano-Burr Grown by RF Sputtering

  • Park, Sin-Yeong;Choe, Gwang-Hyeon;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.462-462
    • /
    • 2013
  • Gallium Oxide (Ga2O3) has been widely investigated for the optoelectronic applications due to its wide bandgap and the optical transparency. Recently, with the development of fabrication techniques in nanometer scale semiconductor materials, there have been an increasing number of extensive reports on the synthesis and characterization of Ga2O3 nano-structures such as nano-wires, nanobelts, and nano-dots. In contrast to typical vaporliquid-solid growth mode with metal catalysts to synthesis 1-dimensional nano-wires, there are several difficulties in fabricating the nanostructures by using sputtering techniques. This is attributed to the fact that relatively low growth temperatures and higher growth rate compared with chemical vapor deposition method. In this study, Ga2O3 chestnut burr were synthesized by using radio-frequency magnetron sputtering method. In contrast to typical sputtering method with sintered ceramic target, a Ga2O3 powder (99.99% purity) was used as a sputtering target. Several samples were prepared with varying the growth parameters, especially he growth time and the growth temperature to investigate the growth mechanism. Samples were characterized by using XRD, SEM, and PL measurements. In this presentation, the details of fabrication process and physical properties of Ga2O3 nano chestnut burr will be reported.

  • PDF

H_{\infty} Control Synthesis for Power System Design using LMI Optimization Method (LMI 최적화기법을 적용한 $H_{\infty}$제어 시스템의 전력계통 안정화장치(PSS) 설계)

  • Jeong, Dae-Won;Ju, Un-Pyo;Kim, Geon-Jung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.4
    • /
    • pp.165-174
    • /
    • 2000
  • This paper presents the application of H$\infty$ control synthesis using LMI optimization method to power system stabilizer(PSS) design. Since power system is usually operated under circumstance of unmeasurable uncertainties and external disturbances, the improvement of small signal stability becomes one of the most important issue for securing system stability and preventing low frequency oscillation phenomena. The LMI optimized H$\infty$ PSS provides robust performance and guarantees the internal stability under these operating conditions. The global optimal H$\infty$ norm is found using LMI convex optimization method which is more systematic than standard two Riccati solution method. The design results are simulated for a case study. We verified that the LMI method shows the best performance characteristic smong standard Riccati method and conventional lead/lag method.

  • PDF

Minimization of Crosstalk by Optimum Synthesis of Profiles of Multiple Coupled Data Transmission Lines on Microstrip (다중결합된 마이크로스트립 데이터 전송로 자태의 최적합성을 통한 누화 최소화)

  • 박의준
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.12
    • /
    • pp.1-11
    • /
    • 1998
  • A line profile synthesis method is presented that minimizes the nearest-neighbor crosstalk peak level for high-speed pulse transmission in multi-coupled microstrip signal buses. We adopted the optimization technique for the reflected wave control on bus lines resulting in increasing the average spacing between strip conductors, since in a parallel-conductor bus the crosstalk energy is concentrated at the nearest neighbors of the driven line. The generalized S-matrix technique is applied for the input and output waveform prediction, and crosstalk characteristics of various nonuniform lines synthesized for increasing the average spacing are analyzed by comparing each other. Simulation results demonstrate that the Chebyshev taper with dips is adequate to significantly minimize the crosstalk peak level under the satisfactory waveform integrity since the profile is oriented to evenly reflect significant pulse spectra within the frequency range of pulse.

  • PDF

Fabrication of 4.25 Co0.53Fe0.47-Al2O3 Composite by High FrequencyInduction Heated Combustion Synthesis and Sintering (펄스 전류 활성 연소합성과 소결에 의한 4.25 Co0.53Fe0.47-Al2O3 복합재료제조)

  • Lee, Dong-Mok;Jo, Kwang-Myoung;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.6
    • /
    • pp.344-348
    • /
    • 2009
  • Dense $4.25Co_{0.53}Fe_{0.47}-Al_{2}O_{3}$ composite was simultaneously synthesized and consolidated by pulsed current activated combustion method within 2 min from mechanically activated powders. Consolidation was accomplished under the combined effects of a pulsed current and mechanical pressure. Dense $4.25Co_{0.53}Fe_{0.47}-Al_{2}O_{3}$ with relative density of up to 96% was produced under simultaneous application of 80 MPa pressure and the pulsed current. Fracture toughness and hardness of the composite are $6MPa{\cdot}m^{1/2}$ and $570kg/mm^{2}$ respectively.

Adaptive Sliding Mode Control Synthesis of Maritime Autonomous Surface Ship

  • Lee, Sang-Do;Xu, Xiao;Kim, Hwan-Seong;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.306-312
    • /
    • 2019
  • This paper investigates to design a controller for maritime autonomous surface ship (MASS) by means of adaptive super-twisting algorithm (ASTA). A input-out feedback linearization method is considered for multi-input multi-output (MIMO) system. Sliding Mode Controller (SMC) is suitable for MASS subject to ocean environments due to its robustness against parameter uncertainties and disturbances. However, conventional SMC has inherent disadvantages so-called, chattering phenomenon, which resulted from the high frequency of switching terms. Chattering may cause harmful failure of actuators such as propeller and rudder of ships. The main contribution of this work is to address an appropriate controller for MASS, simultaneously controls surge and yaw motion in severe step inputs. Proposed control mechanism well provides convergence bewildered by external disturbances in the middle of steady-state responses as well as chattering attenuation. Also, the adaptive algorithm is contributed to reducing non-overestimated value of control gains. Control inputs of surge and yaw motion are displayed by smoother curves without excessive control activities of actuators. Finally, no overshoot can be seen in transient responses.