• Title/Summary/Keyword: frequency stability

Search Result 1,990, Processing Time 0.029 seconds

THE INFLUENCE OF THE INITIAL STABILITY AFTER DENTAL IMPLANT INSTALLATION ON THE OSSEOINTEGRATION (임프란트 식립시 초기 안정성이 골유착에 미치는 영향)

  • Lee, Young-Hoon;Kim, Yeo-Gab;Choi, Byung-Jun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.6
    • /
    • pp.518-528
    • /
    • 2008
  • Purpose: The long-term experience of using osseointegrated implants for prosthetic rehabilitation of the edentulous patients shows that high success rates can be predictably achieved. Primary implant stability has been identified to be a prerequisite to achieve osseointegration. In this study, we set up the amount of removed bone so that it differed on implant installation site for each group. The influence of each initial stability on secondary stability and osseointegration was compared with time lapse using resonance frequency analysis and histomorphometric analysis. Materials and methods: A total 27 US $II^{(R)}$ (Osstem, Korea) implants were placed in the mandibular edentulous area of 3 beagle dogs. The implant site was prepared by the conventional technique with drills, and three experimental groups were divided into under-drilling group, normal-drilling group and over-drilling group. The Implant Stability Quotient (ISQ) was measured at intervals of immediately, 4, 8, 12 weeks after placement using $Osstell^{(R)}$ mentor RFA. After the animals were sacrificed, histomorphometric evaluation was executed for measuring BIC and BD. Results: 1) The under-drilled group showed most high ISQ value for whole experiment period. 2) Bone-to-implant-contact(BIC) showed the tendency to be increased gradually as the experiment period passed except the 8 weeks of the normal group. 3) The under-drilled group showed most high bone density(BD) level for whole experiment period, and it was expressed the aspect to be increased gradually according to an experiment period passage in the average of all group. 4) Resonance frequency analysis and histomorphometric analysis are presumed by generally proportional. Conclusions: As this research result, it seems that there are some correlation between resonance frequency analysis and histomorphometric analysis. As are accomplished osseointegration stably so that more superior at the region which the overpressure comes to add, it will be applicable method in clinical field.

Dynamic Analysis of a Cantilever Beam with the Payametric Excitation in Rotation (회전 방향으로 매개 가진되는 외팔보의 동적 해석)

  • Im, Hyung-Bin;Chung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2270-2276
    • /
    • 2002
  • Dynamic stability of a rotary oscillating cantilever beam is presented in this study. Using the stretch deformation instead of the conventional axial deformation, three linear partial differential equations are derived from Hamilton's principle and transformed into dimensionless forms. Stability diagrams of the first order approximate solutions are obtained by using the multiple scale perturbation method. The stability diagrams show that relatively large unstable regions exist near the combination of the first chordwise bending natural frequency and the first stretch natural frequency. This result is verified by using the generalized -$\alpha$ method.

On the Evaluation of In-Vehicle Dynamic Characteristics and On-Road Dynamic Stability(Angle of Rotation) of Rearview Mirror (리어뷰 미러의 실차 동특성 및 주행시 동적 안정성(회전각)에 대한 평가)

  • Jung, Seung-Kyun;Lee, Keun-Soo;Kim, Jeung-Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.385-386
    • /
    • 2008
  • Dynamic stability of the vehicle rearview mirror is an important factor for the driver's visual perception (image blur) when driving down the road and regarded as one of the vehicle level N&V performance of visible component vibration. Several projects within GM identified a set of objective metrics and validation methods that can replace current existing subjective evaluation of mirror stability. This paper presents objective evaluation results for assessing dynamic stability (angle of rotation) of the vehicle rearview mirrors using both in-lab FRF measurements and on-road testing.

  • PDF

Dynamic Analysis of a Cantilever Beam with the Parametric Exitation in Rotation (회전 방향으로 매개 가진하는 외팔보의 동적 해석)

  • 임형빈;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.335-340
    • /
    • 2001
  • Dynamic stability of a rotary oscillating cantilever beam is presented in this study. Using the stretch deformation instead of the conventional axial deformation, three linear partial differential equations are derived from Hamilton's principle and transformed into dimensionless forms. Stability diagrams of the first order approximate solutions are obtained by using the multiple scale perturbation method. The stability diagrams show that relatively large unstable regions exist near the combination of the first chordwise bending natural frequency and the first stretch natural frequency. This result is verified by using the generalized-${\alpha}$ method.

  • PDF

Dynamic Stability Analysis of a Rotating Blade Considering Gravity Effect (중력의 영향이 고려된 회전 블레이드의 동적 안정성 해석)

  • Jung, Kang-Il;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1052-1057
    • /
    • 2010
  • Dynamic stability of rotating blade considering gravity effect is investigated in this paper. Equations of motion for the beam is derived by employing hybrid deformation variable method and transformed into dimensionless form. The present modeling method is verified by RecurDyn. Stability diagrams are presented to show the influence of the configuration of the beam and angular velocity on the dynamic stability by applying Floquet's theory. Since the natural frequencies are varied when the blade has rotating motion, it is found that relatively large unstable regions exist approximately 1.1 times as high as the first bending natural frequency and half of the sum of first and second bending natural frequency.

Characteristics of Atmospheric Stability Index of Airmass thunderstorm day at Busan (부산지역 기단성 뇌우 발생일의 대기안정도지수 특성)

  • Jeon, Byung Il
    • Journal of Wetlands Research
    • /
    • v.5 no.1
    • /
    • pp.29-40
    • /
    • 2003
  • This study was performed to research the relation between airmass thunderstorm and stability index with 12 years meteorological data(1990~2001) at Busan. Also We used the analysed stability indices from University of Wyoming to consider airmass thunderstorm. The frequency of thunderstorm occurrence during 12 years was 156 days(annual mean 13days). The airmass thunderstorm frequency was 14 days, most of those occurrence were summertime(59%). And occurrence hour of airmass thunderstorm was distributed from 1300LST to 2100LST broadly. The highest forecast index for airmass thunderstorm at Busan was K index, the lowest forecast index was SWEAT index. The forecasting of thunderstorms is based primary on the concepts of conditional instability, convective instability, and forced lifting of air near the surface. Instability is a critical factor in severe weather development. Severe weather stability indices can be a useful tool when applied correctly to a given convective weather situation.

  • PDF

Design Rainfall for Slope Stability Analysis and Its Application (사면안정해석을 위한 설계강우 산정과 적용방안)

  • Kim, Kyung-Suk;Jang, Hyun-Ick;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.957-965
    • /
    • 2008
  • Recently, slope stability analysis in current design criteria is criticized for its unrealistic assumption of groundwater table and slope stability analysis incorporating seepage analysis considering rainfall is gaining a recognition as an alternative. However, a reasonable method for determining the rainfall used in the seepage analysis has not yet been established. Rainfall input for seepage analysis is a time series of rainfall and is similar to the hyetograph which is usually obtained from hydrology. In this paper a method to obtain the hyetograph from the intensity-duration-frequency is proposed. The resulting hyetograph can be used in the in the slope design stage. Also some considerations for practical application of slope stability analysis considering the rainfall is included.

  • PDF

A Study on the Seismic Stability of an Existing Switchboard for Emergency Diesel Generator (비상 디젤발전기용 배전반의 내진안전성에 관한 연구)

  • Neung_Gyo Ha;Chae-Sil Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1341-1347
    • /
    • 2023
  • This study proposes to ensure the seismic stability of an existing switchboard for emergency diesel generator by applying mode analysis, static analysis and dynamic analysis. First, a three dimensional model for the swithboard was made with simplification for mode analysis. Next, The mode analysis for the finite element model of the existing switchboard was performed. The 1st natural frequency below 33 Hz, the seismic safety cutoff frequency, was calculated to be 21.943 Hz. Finally, based on the seismic stability theory, the von-Mises equivalent stresses derived by structural analysis and response spectrum analysis under the normal and faulted conditions were 74.179 MPa and 49.769 MPa, respectively. These are less than specified allowable stresses. So seismic stability was confirmed.

A Study on the Mixing Capacity of Lifted Flame by the Nozzle Hole-tone of High Frequency in Non-premixed Jet Flames (비예혼합 제트화염에서 고주파수의 노즐 구멍음에 의한 부상화염 혼합성능에 관한 연구)

  • Jo, Joon-Ik;Lee, Kee-Man
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.35-40
    • /
    • 2011
  • An experimental investigation of the characteristic of non-premixed lifted flames with nozzle hole-tone of high-frequency has been performed. Before the fuel was supplied to nozzle, the fuel was supplied through a burner cavity which was located under the nozzle. The fuel passed through the excitation cavity under the influence of the high-frequency affects the lifted flame characteristics. The measurements were performed in flow range that occurs lifted flame and blow out. When the high-frequency is generated from burner cavity, the lifted length became shorter, and noise reduced comparing to unexcitation case. Additionally, operating flow range was increased and diameter of flame base became smaller with high-frequency effect. Through this experiments, it's ascertained that the high-frequency excitation can be adopted with effective method for flame stability and noise reduction.