• Title/Summary/Keyword: frequency spectrum curve

Search Result 38, Processing Time 0.028 seconds

A Numerical Analysis and Experiment for Micro-Fans (축류 마이크로 홴의 전산해석 및 성능시험)

  • Cho, Jin-Soo;Pyun, Tae-Kyoon;Park, Wang-Sik;Chun, Chang-Kun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.895-906
    • /
    • 2000
  • A three dimensional linear frequency-domain lifting surface panel method was used for the aerodynamic analysis of axial flow type micro-fans. As proven by the duct modeling, the tip clearance of the micro-fans tested is large enough to ignore the calculated effect of the duct system. As the numerical results and experimental data agreed well in the operating point region, the method was applicable in the parametric studies to determine the design parameters of axial flow fans. Experiments on micro-fans were carried out based on KS B 6311. The newly designed micro-fan showed improvements in both static pressure rise and volumetric flow rate compared to the existing fans at a given operating condition. No detection of surging and the smooth characteristic curve proved the improvement in performance. To reduce the fan noise in the fan design, it was necessary to make use of the frequency spectrum analysis data. Measurement of sound pressure level for micro-fans was conducted based on KS B 6361 and KS A 0705. The peak - which occurs at blade passage frequency and its higher harmonics due to the fan noise - was not detected. This justifies the design methodology of the blade.

Evaluation of Ride Comfort in Time Domain by Using z-Transform (z변환을 이용한 시간영역에서의 승차감 평가)

  • Kim, Young-Guk;Kim, Seog-Won;Park, Chan-Kyoung;Kim, Sang-Soo;Kim, Ki-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.6
    • /
    • pp.495-500
    • /
    • 2011
  • In evaluating the ride comfort of railway vehicles, relationship between passenger's feeling and vibration characteristics is very important because human feeling is dependent on frequency spectrum of vibration. Therefore, the weighing curves in frequency domain are used to evaluate the ride comfort of railway vehicles. These curves have been defined in the Laplace transfer functions. It is necessary to convert the Laplace weighing function to the z weighing function in order to obtain the rms value in the time domain. In the present paper, we have applied Tustin's approximation to transform the Laplace weighing function to the z weighing and validated this method by reviewing the various cases.

Evaluation of DNA Damage Using Microwave Dielectric Absorption Spectroscopy

  • Hirayama, Makoto;Matuo, Youichirou;Sunagawa, Takeyoshi;Izumi, Yoshinobu
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.339-343
    • /
    • 2016
  • Background: Evaluation of deoxyribonucleic acid (DNA)-strand break is important to elucidate the biological effect of ionizing radiations. The conventional methods for DNA-strand break evaluation have been achieved by Agarose gel electrophoresis and others using an electrical property of DNAs. Such kinds of DNA-strand break evaluation systems can estimate DNA-strand break, according to a molecular weight of DNAs. However, the conventional method needs pretreatment of the sample and a relatively long period for analysis. They do not have enough sensitivity to detect the strand break products in the low-dose region. Materials and Methods: The sample is water, methanol and plasmid DNA solution. The plasmid DNA pUC118 was multiplied by using Escherichia coli JM109 competent cells. The resonance frequency and Q-value were measured by means of microwave dielectric absorption spectroscopy. When a sample is located at a center of the electric field, resonance curve of the frequency that existed as a standing wave is disturbed. As a result, the perturbation effect to perform a resonance with different frequency is adopted. Results and Discussion: The resonance frequency shifted to higher frequency with an increase in a concentration of methanol as the model of the biological material, and the Q-value decreased. The absorption peak in microwave power spectrum of the double-strand break plasmid DNA shifted from the non-damaged plasmid DNA. Moreover, the sharpness of absorption peak changed resulting in change in Q-value. We confirmed that a resonance frequency shifted to higher frequency with an increase in concentration of the plasmid DNA. Conclusion: We developed a new technique for an evaluation of DNA damage. In this paper, we report the evaluation method of DNA damage using microwave dielectric absorption spectroscopy.

Circular Diamond Saw with Low Noise Shank (원형 다이아몬드톱의 저소음 생크)

  • 윤승원;지원호;우종혁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.729-732
    • /
    • 2004
  • An experimental and numerical approach has been carried out for to see the noise characteristics of a circular diamond saw. The noise level measurement result for the several kinds of shanks shows us that the noise level reduction in high frequency range could be an effective way to control the noise problem. Sandwich type shank whose center part is laminated with a low Young‘s modulus material greatly reduces the noise level. The noise level for the shank where several curve shaped slits are provided in the circumferential direction is reduced considerably too. The response spectrum analysis by the FEM shows us to be an alternative for predicting the noise characteristics of the shank.

  • PDF

Active Sonar Target Detection Using Fractional Fourier Transform (Fractional 푸리에 변환을 이용한 능동소나 표적탐지)

  • Baek, Jongdae;Seok, Jongwon;Bae, Keunsung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.22-29
    • /
    • 2016
  • Many studies in detection and classification of the targets in the underwater environments have been conducted for military purposes, as well as for non-military purpose. Due to the complicated characteristics of underwater acoustic signal reflecting multipath environments and spatio-temporal varying characteristics, active sonar target detection technique has been considered as a difficult technique. In this paper, we describe the basic concept of Fractional Fourier transform and optimal transform order. Then we analyze the relationship between time-frequency characteristics of an LFM signal and its spectrum using Fractional Fourier transform. Based on the analysis results, we present active sonar target detection method. To verify the performance of proposed methods, we compared the results with conventional FFT-based matched filter. The experimental results demonstrate the superiority of the proposed method compared to the conventional method in the aspect of AUC(Area Under the ROC Curve).

Dynamic Spin Switching of Magnetic Films and Tunnel Junctions

  • Miyazaki, T.;Ando, Y.;Kubota, H.;Mizukami, Y.;Nakamura, H.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.272-273
    • /
    • 2003
  • Spin dynamics has been investigated intensively in various kinds of fields. Most popular one is an initial permeability at high frequency. Also, magnetic after-effect such as thermal fluctuation of fine magnetic particles and disaccommodation in soft magnetic materials were extensively studied in the past. When we apply an external farce with the same frequency as that of the system being examined, the system absorbs the external energy and the precession enhances. It is called resonance in general. Among the various resonances, ferromagnetic resonance (FMR) has been used as a good tool to evaluate material constants such as saturation manetization or spin damping parameter by analyzing a resonance curve. In this talk first instinctive understanding of Gilbert spin damping and spin pumping will be explained. Then, experimental data for enhancement of Gilbert damping parameter (G) evaluated from FMR spectrum and spin precession measured by a time resolved pump-probe method for Permalloy thin film will be introduced. Finally, magnetization reversal observed by air-coplanar probe will be given.

  • PDF

Electrochemical Impedance Study for Selective Dissolution of a Cu-Zn Alloy

  • Hoshi, Y.;Tabei, K.;Shitanda, I.;Itagaki, M.
    • Corrosion Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.311-313
    • /
    • 2016
  • The anodic dissolution behavior of copper and brass in an electrolyte solution of 0.5M NaCl containing 0.5 mM $NaHCO_3$ was investigated by electrochemical impedance spectroscopy. The Nyquist plots of the copper impedance described a small loop in the high-frequency range and a large locus in the low-frequency range. Additionally, the features of the impedance spectrum of the brass were similar to those of the copper. This indicates that the copper-enriched layer formed on the brass surface due to the selective dissolution of the zinc from the surface. In addition, the rest potential and the anodic polarization curve for each sample were measured in order to discuss the selective dissolution of the zinc from the brass surface.

Determination of High-pass Filter Frequency with Deep Learning for Ground Motion (딥러닝 기반 지반운동을 위한 하이패스 필터 주파수 결정 기법)

  • Lee, Jin Koo;Seo, JeongBeom;Jeon, SeungJin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.183-191
    • /
    • 2024
  • Accurate seismic vulnerability assessment requires high quality and large amounts of ground motion data. Ground motion data generated from time series contains not only the seismic waves but also the background noise. Therefore, it is crucial to determine the high-pass cut-off frequency to reduce the background noise. Traditional methods for determining the high-pass filter frequency are based on human inspection, such as comparing the noise and the signal Fourier Amplitude Spectrum (FAS), f2 trend line fitting, and inspection of the displacement curve after filtering. However, these methods are subject to human error and unsuitable for automating the process. This study used a deep learning approach to determine the high-pass filter frequency. We used the Mel-spectrogram for feature extraction and mixup technique to overcome the lack of data. We selected convolutional neural network (CNN) models such as ResNet, DenseNet, and EfficientNet for transfer learning. Additionally, we chose ViT and DeiT for transformer-based models. The results showed that ResNet had the highest performance with R2 (the coefficient of determination) at 0.977 and the lowest mean absolute error (MAE) and RMSE (root mean square error) at 0.006 and 0.074, respectively. When applied to a seismic event and compared to the traditional methods, the determination of the high-pass filter frequency through the deep learning method showed a difference of 0.1 Hz, which demonstrates that it can be used as a replacement for traditional methods. We anticipate that this study will pave the way for automating ground motion processing, which could be applied to the system to handle large amounts of data efficiently.

A Frequency Domain Analysis of Corneal Deformation by Air Puff (Air puff에 의한 각막 변형의 주파수 영역 분석)

  • Hwang, Ho-Sik;Lee, Byeong Ha;Lee, Chang Su
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.240-247
    • /
    • 2014
  • Intraocular pressure is measured after a cornea air puff by observing biomechanical properties such as thickness or displacement of the cornea. In this paper, we deal with a frequency domain analysis of corneal deformation in the air puff tonometry that is used to diagnose glaucoma or lasik. We distinguish the patient from the normal by measuring the oscillation frequency in the neighborhood of the central cornea section. A binary image was obtained from the video images, and cornea vertical oscillation profile was extracted from the difference between the vertical displacement data and the curve fitting. In terms of Fourier transform, a vibration frequency of 479.2Hz for the patient was obtained as well as more higher 702.8Hz for the normal due to stiffness. Hilbert-Huang transform's empirical mode decomposition generally describes local, nonlinear, and nonstationary data. After the data were decomposed into intrinsic mode functions, a spectrum and power were analysed. Finally, we confirm that the patient has 6 times more higher power ratio for the specific intrinsic mode function between the patient and the normal.

Impulse Response Filtration Technique for the Determination of Phase Velocities from SASW Measurements (SASW시험에 의한 위상속도 결정을 위한 임펄스 응답필터 기법)

  • ;Stokoe, K.H., Il
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.111-122
    • /
    • 1997
  • The calculation of phase velocities in Spectral-Analysis -of-Surface -Waves (SASW) meas urements requires unwrapping phase angles. In case of layered systems with strong stiffness contrast like a pavement system, conventional phase unwrapping algorithm to add in teger multiples of 2n to the principal value of a phase angle may lead to wrong phase volocities. This is because there is difficulty in counting the number of jumps in the phase spectrum especially at the receiver spacing where the measurements are in the transition Bone of defferent modes. A new phase interpretation scheme, called "Impulse Response Fil traction ( IRF) Technique," is proposed, which is based on the separation of wave groups by the filtration of the impulse response determinded between two receivers. The separation of a wave group is based on the impulse response filtered by using information from Gabor spectrogram, which visualizes the propagation of wave groups at the frequency -time space. The filtered impulse response leads to clear interpretation of phase spectrum, which eliminates difficulty in counting number of jumps in the phase spectrum. Verification of the IRF technique was performed by theoretical simulation of the SASW measurement on a pavement system which complicates wave propagation.opagation.

  • PDF