• Title/Summary/Keyword: frequency shifts

Search Result 177, Processing Time 0.024 seconds

Health monitoring of steel structures using impedance of thickness modes at PZT patches

  • Park, Seunghee;Yun, Chung-Bang;Roh, Yongrae;Lee, Jong-Jae
    • Smart Structures and Systems
    • /
    • v.1 no.4
    • /
    • pp.339-353
    • /
    • 2005
  • This paper presents the results of a feasibility study on an impedance-based damage detection technique using thickness modes of piezoelectric (PZT) patches for steel structures. It is newly proposed to analyze the changes of the impedances of the thickness modes (frequency range > 1 MHz) at the PZT based on its resonant frequency shifts rather than those of the lateral modes (frequency range > 20 kHz) at the PZT based on its root mean square (RMS) deviations, since the former gives more significant variations in the resonant frequency shifts of the signals for identifying localities of small damages under the same measurement condition. In this paper, firstly, a numerical analysis was performed to understand the basics of the NDE technique using the impedance using an idealized 1-D electro-mechanical model consisting of a steel plate and a PZT patch. Then, experimental studies were carried out on two kinds of structural members of steel. Comparisons have been made between the results of crack detections using the thickness and lateral modes of the PZT patches.

Experimental Study on Leak-induced Vibration in Water Pipelines Using Fiber Bragg Grating Sensors

  • Kim, Dae-Gil;Lee, Aram;Park, Si-Woong;Yeo, Chanil;Bae, Cheolho;Park, Hyoung-Jun
    • Current Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.137-142
    • /
    • 2022
  • Leak detection is one of the most important challenges in condition monitoring of water pipelines. Fiber Bragg grating (FBG) sensors offer an attractive technique to detect leak signals. In this paper, leak measurements were conducted on a water distribution pilot plant with a length of 270 m and a diameter of 100 mm. FBG sensors were installed on the pipeline surface and used to detect leak vibration signals. The leak was demonstrated with 1-, 2-, 3-, and 4-mm diameter leak holes in four different pipe types. The frequency response of leak signals was analyzed by fast Fourier transform analysis in real time. In the experiment, the frequency range of leak signals was approximately 340-440 Hz. The frequency shifts of leak signals according to the pipe type and the size of the leak hole were demonstrated at a pressure of 1.8 bar and a flow rate of 25.51 m3/h. Results show that frequency shifts detected by FBG sensors can be used to detect leaks in pipelines.

Effects of PCB Ground Plane and Case on Internal WLAN Patch Antenna

  • Kim, H.T.;Heo, J.K.;Jeong, K.J.;Hwang, S.W.
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.252-256
    • /
    • 2007
  • We demonstrate that the effect of the PCB ground length and the cover is important in the performance of 2.4 GHz patch antennas. The Center frequency in the return loss shifts as much as 0.5 GHz, when the length of the PCB ground increases from 30 to 85 mm. The position of 10-dB bandwidth accordingly shifts to lower frequency region. Finally, the resonance at 2.4 GHz becomes stronger when the top cover exists. The radiation pattern of the patch antenna is also strongly affected by the ground structure and the existence of the top cover. In both the return loss and the radiation pattern, 3-dimensional simulations are shown to be an efficient tool.

  • PDF

Frequency Analysis of EMG Signals using Power Spectral Density (전력 스펙트럼 밀도를 이용한 근전도 신호의 주파수 해석)

  • 박상희;변윤식
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.19-30
    • /
    • 1985
  • This paper describes the EMG signals in frequency domain using power spectral density, The changes in the moan frequency can represent the energy distribution which results from changing in load before and during fatigue. Most of EMG signal power spectrum is located between 10 and 200Hz. Shifts of the high-energy regions of the power spectra can be inferred from the changes in the mean frequency. If the load is increased without fatigue-ocurring, the high frequency regions have more energy than the low frequency regions. And if load is increased during fatigue, the low frequency regions have more energy than the high frequency regions.

  • PDF

Dietary Behaviors and Dietary Quality are Determined by the Working Hours of Industrial Male Workers Working in Rotating Shifts (순환형 교대 근무 남성 근로자의 근무 시간대별 식행동 및 식사의 질)

  • Myung-Joo, Choi;Ye-Sun, Kim;Mi-Hyun, Kim
    • Journal of the Korean Dietetic Association
    • /
    • v.29 no.1
    • /
    • pp.13-30
    • /
    • 2023
  • This study investigates the effect of working hours on the dietary behaviors and dietary quality of male industrial workers employed in rotating shifts. The survey was conducted from February to March 2022, enrolling 209 male workers operating in rotational shifts at industries in the Chungcheongnam-do region. Eating behavior and health awareness were investigated during the morning shift, afternoon shift, and night shift for the same subjects. The shift timings were found to be associated with dietary behavior, which had an impact on the dietary quality of workers. Negative effects of shift timings on diet and health were also perceived by the shift workers. The frequency of alcohol consumption was high during the morning shift, and the frequency of night time snack intake was high during the afternoon shift. During the night shift, there was decreased vegetable intake and increased ramyeon intake. Compared to the morning shift, a significant decrease in dietary quality scores was found during the night shift. The workers recognized that rotating shift work negatively affected health, eating habits and sleep. There was a high demand for providing a variety of menus and healthy night snacks in the company cafeteria. When nutritional counseling and educational health services were provided, the willingness to participate was high. Therefore, to improve the health and dietary quality of shift workers, there is a need to provide diets suitable for the working environment and the characteristics, and to provide nutrition management services.

Optimization Methods for Power Allocation and Interference Coordination Simultaneously with MIMO and Full Duplex for Multi-Robot Networks

  • Wang, Guisheng;Wang, Yequn;Dong, Shufu;Huang, Guoce;Sun, Qilu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.216-239
    • /
    • 2021
  • The present work addresses the challenging problem of coordinating power allocation with interference management in multi-robot networks by applying the promising expansion capabilities of multiple-input multiple-output (MIMO) and full duplex systems, which achieves it for maximizing the throughput of networks under the impacts of Doppler frequency shifts and external jamming. The proposed power allocation with interference coordination formulation accounts for three types of the interference, including cross-tier, co-tier, and mixed-tier interference signals with cluster head nodes operating in different full-duplex modes, and their signal-to-noise-ratios are respectively derived under the impacts of Doppler frequency shifts and external jamming. In addition, various optimization algorithms, including two centralized iterative optimization algorithms and three decentralized optimization algorithms, are applied for solving the complex and non-convex combinatorial optimization problem associated with the power allocation and interference coordination. Simulation results demonstrate that the overall network throughput increases gradually to some degree with increasing numbers of MIMO antennas. In addition, increasing the number of clusters to a certain extent increases the overall network throughput, although internal interference becomes a severe problem for further increases in the number of clusters. Accordingly, applications of multi-robot networks require that a balance should be preserved between robot deployment density and communication capacity.

Design of a Dual mode Three-push Tripler Using Stacked FETs with Amplifier mode operation

  • Yoon, Hong-sun;Park, Youngcheol
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1088-1092
    • /
    • 2018
  • In this paper, we propose a dual-mode frequency tripler using push-push and stacked FET structures. The proposed circuit can operate either in frequency multiplier mode or in amplifier mode. In the frequency multiplier mode, push-push frequency multiplication is achieved by allowing input signals with particular phase shifts. In the amplifier mode, the device operates as a distributed amplifier to obtain high gain. Also both modes were designed using stacked FET structure. The designed circuit showed frequency tripled output power of 9.7 dBm at 2.4 GHz with the input at 800 MHz. On the other hand, in the amplifier mode, the device showed 8.9 dB of gain to generate 19.5 dBm at 800 MHz.

Analysis of Static Shift and its Correction in Magnetotelluric Surveys (MT 탐사에서의 정적효과 및 보정법 분석)

  • Hanna Jang;Yoonho Song;Myung Jin Nam
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.2
    • /
    • pp.129-143
    • /
    • 2024
  • In magnetotelluric (MT) surveys, small inhomogeneities near the surface cause a static shift in which apparent resistivities shift regardless of frequency. As the static shift in MT data leads to errors in subsurface structure interpretation, many studies have been conducted over the past few decades to mitigate or remove the distortions it caused. The most representative method involves removing static shifts from the data before inversion. Conversely, static shifts can be corrected during inversion or included in the inversion process. In addition, other geophysical data can be used to remove static shifts. However, the correction methods are limited to one-dimensional (1D) static responses, and limitations remain in two- or three-dimensional (2D or 3D) interpretation of distorted MT data owing to static shifts. This study provides a foundation for future studies on static shift by analyzing several previously published methods.

Solvent Effects upon Carbonyl Stretching Freguency Shifts of Raman Spectra : Ketones (라만 스펙트럼의 카보닐 신축진동 이동에 대한 용매효과 : 케톤)

  • In Ju Lee;Sung Hun Seo;Mu Sang Lee
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.12
    • /
    • pp.987-994
    • /
    • 1993
  • Inductive and resonance effects play an important role in determining carbony) stretching frequencies of ketones. Hydrogen bonding, dielectric effects, and steric effects are all factors which determine the carbonyl stretching frequency, νC=O of ketones in solution. The $ν_{C=O}$ frequencies were shifted by approximately 27$cm^{-1}$ each by substituting to a phenyl group for a methyl group in acetone. The $ν_{C=O}$ frequency for ketones shifted differently in various solvents and increased with increasing the volume ratio of the ketones in water solutions. The $ν_{C=O}$ frequency for ketones shifts continously at constant concentration of ketone in solutions of $(CH_3)_2SO/CCl_4$and$CHCl_3/CCl_4$ with changing of the mole ratio of two solvents. The $ν_{C=O}$ frequency was also affected by changing concentration in either $CCl_4$ or $(CH_3)_2SO$ solution and in either $CCl_4$or $CHCl_3$ solution.

  • PDF

Formulation of New Hyperbolic Time-shift Covariant Time-frequency Symbols and Its Applications

  • Iem, Byeong-Gwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1E
    • /
    • pp.26-32
    • /
    • 2003
  • We propose new time-frequency (TF) tools for analyzing linear time-varying (LTV) systems and nonstationary random processes showing hyperbolic TF structure. Obtained through hyperbolic warping the narrowband Weyl symbol (WS) and spreading function (SF) in frequency, the new TF tools are useful for analyzing LTV systems and random processes characterized by hyperbolic time shifts. This new TF symbol, called the hyperbolic WS, satisfies the hyperbolic time-shift covariance and scale covariance properties, and is useful in wideband signal analysis. Using the new, hyperbolic time-shift covariant WS and 2-D TF kernels, we provide a formulation for the hyperbolic time-shift covariant TF symbols, which are 2-D smoothed versions of the hyperbolic WS. We also propose a new interpretation of linear signal transformations as weighted superposition of hyperbolic time shifted and scale changed versions of the signal. Application examples in signal analysis and detection demonstrate the advantages of our new results.