• Title/Summary/Keyword: frequency response function plot

Search Result 8, Processing Time 0.027 seconds

A Note on Bode Plot Asymptotes based on Transfer Function Coefficients

  • Kim, Young-Chol;Lee, Kwan-Ho;Woo, Young-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.664-669
    • /
    • 2005
  • In this note, we present a different asymptotes from the standard approximate lines of the Bode magnitude plot. Wherein the pseudo break frequency is defined in terms of coefficients of denominator and numerator polynomials of the transfer function instead of its poles and zeros. Several comparative examples are given. This result can be used for the characteristic ratio assignment(CRA) [1], [2] with frequency response requirements, which is a method of designing linear controller in parameter space.

  • PDF

Sweet Area Determination by Performance Sensitivity Analysis for an Automotive Vehicle Suspension (자동차용 현가장치의 성능감도해석에 의한 안정승차영역의 결정)

  • Park, Ho;Hahn, Chang-Su;Kim, Byeong-Woo;Kim, Dong-Gyu
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.92-100
    • /
    • 2003
  • Using a quarter car model, an analytic method for performance estimation of a vehicle suspension system with respect to frequency response, RMS response and performance index is presented. From frequency response function, compromization of response performance to the whole frequency range is verified and from RMS response and performance index, sensitivity of ride md handling characteristics are examined. Using a full car model, sweet area(stable ride area) are determined and performance sensitivity is estimated according to the change of feedback gains. In order to esimate the output sensitivity, response we is displayed using a 3-dimensional contour plot. Design data n suggested for optimal design parameter esimation, which maximize the performance of the given suspension system.

Optimal Motion Control of 3-axis SCARA Robot Using a Finite Jerk and Gain Tuning Based on $LabVIEW^{(R)}$ ($LabVIEW^{(R)}$ 기반 3축 스카라 로봇의 유한 저크 및 게인 동조를 이용한 최적 모션 제어)

  • Kim, J.H.;Chung, W.J.;Kim, H.G.;Lee, G.S.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.40-46
    • /
    • 2008
  • This paper presents the optimal motion control for 3-axis SCARA robot by using $LabVIEW^{(R)}$. Specifically, for optimal motion control of 3-axis SCARA robot, we study velocity profile based on finite jerk(the first derivative of acceleration) and optimal gain tunig based on frequency response method by using $LabVIEW^{(R)}$. The velocity optimization with finite jerk aims at generating the smooth velocity profile of robot. Velocity profile based on finite jerk is acquired and applied to 3-axis SCARA robot by using $LabVIEW^{(R)}$. DSA(Dynamic Signal Analyzer) for frequency response method is programed by using $LabVIEW^{(R)}$. We obtain the bode plot of transfer function about 3-axis SCARA robot by using DSA, and perform the gain tuning considering dynamic characteristic based on the bode plot. These experiments have shown that the proposed motion control can reduce vibration displacement and response error rate each 33.7% and 51.7% of 3-axis SCARA robot.

Study on Controller Design of AC Servo Permanent Magnet Synchronous Motor by Matrix Converter : Speed Controller (매트릭스 컨버터에 의한 AC 서보 영구자석형 동기전동기의 제어기 설계에 대한 고찰 : 속도제어기)

  • Jeong, Chung-Il;Lee, Sang-Cheol;Mo, Dong-Yeong;Choi, Chang-Young;Kim, Tae-Woong;Park, Gwi-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.106-108
    • /
    • 2008
  • This paper deals with the design for speed controller to drive PMSM by matrix converter without DC-link circuit as the power conversion system of AC servo motor drive. To design the speed controller of PMSM drive, the closed-loop transfer function of speed controller is calculated and then the frequency-domain response characteristics are analyzed by bode plot using Matlab. Based on the results by bode plot, the speed control gains are determined. As the real effects of controller designed in the frequency-domain display in the time-domain, the performance of speed controller is confirmed by the step response of speed controller. The design examples are shown and its validity of the design method mentioned in the paper is verified through PSIM simulation.

  • PDF

The Parameter Estimation and Stability Improvement of the Brushless DC Motor (Brushless DC Motor의 제어 파라미터 추정과 안정도향상)

  • Kim, Cherl-Jin;Im, Tae-Bin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.3
    • /
    • pp.131-138
    • /
    • 1999
  • Generally, the digital controller has many advantages such as high precision, robustness to electrical noise, capability of flexible programming and fast response to the load variation. In this study, we have established proper mathematical equivalent model of Brushless DC (BLDC) motor and estimated the motor parameter by means of the back-emf measurement as being the step input to the controlled target BLDC motor. And the validity of proposed estimation method is confirmed by the test result of step response. As well, we have designed the reasonable digital controller as a consequence of the root locus method which is obtained from the open-loop transfer function of BLDC motor with hall sensor, and the determination of control gain for variable speed control. Here, revised Ziegler-Nichols tuning method is applied for the proper digital gain establishment, and the system stability is verified by the frequency domain analysis with Bode-plot and experimentation.

  • PDF

A Case Study of the Higher Vibration on the Driving Motors of Port Crane (항만용 크레인 구동 모터 고진동 사례 연구)

  • Kim, Yeong-Chun;Park, Heui-Joo
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.416-421
    • /
    • 2001
  • It was firstly issued that frequently broken of Encoder installed at travelling motor during RTGC operation. Estimated as broken due to excessive vibration of traveling and motor manufacturer claimed it as resonance of motor base. The principal vibration of Encoder was caused by the rotating vibration component of motor and by traveling wheel. The component transmitted from the wheel didn't have great vibration by the resonance with motor and other parts. Therefore, the plans was tried to add the support point to prevent the Encoder shaft vibrated greatly and inhibit the vibration. These showed good results.

  • PDF

The Stability Improvement of Brushless DC Motor by Digital PI Control (디지털 PI제어에 의한 브러시리스 직류모터의 안정도 향상)

  • Yoon, Shin-Yong;Baek, Soo-Hyun;Kim, Yong;Kim, Cherl-Jin;Im, Tae-Bin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.1
    • /
    • pp.38-46
    • /
    • 2000
  • This study have established proper mathematical equivalent model of Brushless DC (BLDC) motor and estimated the motor parameter by means of the back-emf measurement as being the step input to the controlled target BLDC motor. And the validity of proposed estimation method is confirmed by the test result of step response. As well, we have designed the reasonable digital controller as a consequence of the root locus method which is obtained from the open-loop transfer function of BLDC motor with hall sensor, and the determination of control gain for variable speed control. Here, revised Ziegler-Nichols tuning method is applied for the proper digital gain establishment, and the system stability is verified by the frequency domain analysis with Bode-plot and experimentation.

  • PDF

Static and Dynamic Analysis and Optimization Design of 40,000-rpm High-Speed Spindle for Machine Tools (공작기계용 40,000rpm 고속주축의 정·동적 해석과 최적설계에 관한 연구)

  • Kim, Dong Hyeon;Lee, Choon Man;Choi, Hyun Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.105-111
    • /
    • 2013
  • The spindle is the main component in machine tools. The static and dynamic characteristics of the spindle directly affect the machining accuracy of workpieces. The characteristics of the spindle depend on the shaft size, bearing span, built-in motor location, and so on. Therefore, the appropriate selection of these parameters is important to improve the spindle characteristics. This paper presents the analysis of the static and dynamic characteristics and optimization design of a 40,000-rpm high-speed spindle. Statistical analysis for optimization and finite element analysis were performed. This study uses the response surface method to optimize the objective function and design factors. The targets are the natural frequency and displacement. The design factors are the shaft length, shaft diameter, bearing span, and motor location. The optimized design provides better results than the initial model, and these results are expected to improve the static and dynamic characteristics of the spindle.