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Abstract: In this note, we present a different asymptotes from the standard approximate lines of the Bode magnitude plot.

Wherein the pseudo break frequency is defined in terms of coefficients of denominator and numerator polynomials of the transfer

function instead of its poles and zeros. Several comparative examples are given. This result can be used for the characteristic ratio

assignment(CRA) [1], [2] with frequency response requirements, which is a method of designing linear controller in parameter

space.
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1. Introduction
In the classical frequency response design using Bode plot,

there are many cases that it is more convenient to use the

asymptotes of frequency magnitude response and break point

frequencies (which is sometimes called as corner frequency)

instead of the exact Bode plots. In addition to the frequency

response requirements, if we have to consider transient re-

sponse specifications as like overshoot and the speed of re-

sponse, the problem may not be easily carried out by using

the conventional Bode plot. A reason is that the precise re-

lationship between pole-zero locations of a system and its

transient response is not yet known except for the case of

a second order system. As different methods for directly

dealing with time response problems, the characteristic ratio

assignment [1], [2], [3] and the coefficient diagram method

(CDM) [4] have been studied since the mid of 1990. These

methods have been developed by expanding relationships be-

tween time response of an all pole system and the charac-

teristic ratios and a generalized time constant, which are

defined as functions of coefficients of transfer function. This

idea was originally investigated by Naslin [5] in 1960 but has

not been paid attention so much until Manabe [4] invented

the CDM. It is important to note that (i) the characteristic

ratios are closely related to the damping and the stability,

and (ii) the speed of response is exactly characterized by the

generalized time constant. Some of them have been proved

recently by Kim [1]. It was shown in [1], [2], [3], [4] that the

CRA and CDM are very useful for the problem of design-

ing a controller that meets the time response requirements.

First of all, it is remarkable that all the design procedures of

CRA/CDM are carried out in parameter space. However, it

is not adequate to apply both CRA/CDM directly to the de-

sign problem with frequency response specifications. In [5],

Naslin also advocated that for a well damped all pole sys-

tem, the points of intersection of the pseudo-asymptotes of

its frequency magnitude are equal to the characteristic pul-

satances. The pulsatances are defined by ratios of adjacent

two coefficients of a polynomial. This is a simple method to

draw an asymptotic gain diagram. Furthermore, this may be

applied to the CRA and the CDM for the sake of considering
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the frequency response requirements. However, according to

our observations, the pulsatances do not coincide with the

real break points in the case of which the transfer function

has either under-damped complex poles and zeros or mul-

tiple ones. In other words, when we use the pulsatances

as pseudo break points, it must be restrictively applied to

merely the well damped systems. This paper starts from this

point. Consider a loop transfer function L(s) = N(s)/D(s).

From |L(jw)|2 = N(jw)N(−jw)/D(jw)D(−jw), each term

of |L(jw)|2 can be plotted separately. The modulus of the

term in w gives a straight line of slope 1. Similarly, the

term in wk is represented by a straight line of slope k. We

shall call these straight lines the pseudo asymptotes. Those

lines intersect each other. Here the points of intersection are

defined by new pseudo break points, which are finally repre-

sented in terms of the characteristic ratios and a generalized

time constant of denominator and numerator polynomials

individually. We will show through several comparative ex-

amples that the pseudo asymptotes coincide with real Bode

plot for most cases of transfer functions. It is also shown

that new pseudo break points are closely identical to the

real corner frequencies well.

2. Asymptotes of Bode magnitude curve
In this section, we first give several definitions and then rep-

resent a new asymptote of the Bode magnitude plot.

2.1. Definitions and Motivation

The following definitions have been originally introduced by

Naslin [5]. Consider a polynomial with real positive coeffi-

cients:

δ(s) = δnsn + δn−1s
n−1 + · · ·+ δ1s + δ0, δi > 0. (1)

The characteristic ratios are defined as:

α1 =
δ2
1

δ0δ2
, α2 =

δ2
2

δ1δ3
, · · · , αn−1 =

δ2
n−1

δn−2δn
(2)

and the generalized time constant is defined to be

τ :=
δ1

δ0
. (3)

The characteristic pulsatances are defined by

β0 =
δ0

δ1
, β1 =

δ1

δ2
, · · · , βn−1 =

δn−1

δn
(4)
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Here this is called as pulsatance briefly. We then have

α1 =
β1

β0
, α2 =

β2

β1
, · · · , αn =

βn

βn−1
(5)

The coefficients δi of δ(s) can also be represented in terms

of αi’s and τ as follows:

δ1 = δ0τ (6)

δi =
δ0τ

i

αi−1α2
i−2α

3
i−3 · · ·αi−2

2 αi−1
1

, for i = 2, · · · , n. (7)

We see that for a given set of values αis, τ , and δ0 the corre-

sponding polynomial δ(s) is uniquely determined. As men-

tioned in introduction, all these parameters that are repre-

sented in terms of coefficients of the transfer function play

very important roles in the CRA/CDM ([1], [4]). Naslin [5]

has observed that the pulsatances of a well damped poly-

nomial are closely identical to the real break frequencies of

Bode plot. We give an example to show how the pulsatances

relate to the the pseudo-asymptotes of frequency responses.

Example 1 Let us examine two cases: one is the well

damped system and the other is not. Consider the following

transfer function.

G(s) =
1

(s/0.5 + 1)(s/2 + 1)(s/20 + 1)

=
1

0.05s3 + 1.125s2 + 2.55s + 1
.

According to (4), pulsatances of the denominator are

β = [β0 β1 β2] = [0.3922 2.2667 22.5].

It is seen that the pulsatances are very similar to the values

of real break points of G(s). We can also construct the cor-

responding transfer function with the pulsatances as follows:

Gp(s) =
1

(s/β0 + 1)(s/β1 + 1)(s/β2 + 1)
.

As shown in Fig. 1, Bode plots of the G(s) and Gp(s) coincide

with each other. Secondly, the following transfer function is

the case including complex poles and zeros.

T (s) =
(s/10)2 + 1.4s/10 + 1

(s/0.5 + 1)(s/3 + 1)[(s/50)2 + 0.8(s/50) + 1]

=
0.01s2 + 0.14s + 1

2.667 · 10−4s4 + 0.0116s3 + 0.7044s2 + 2.3493s + 1
.

The pulsatances of numerator and denominator of T (s) are

Numerator : [βN
0 βN

1 ] = [7.1492 14]

Denominator : [βD
0 βD

1 βD
2 βD

3 ] = [0.426 3.335 43.5 60.724]

Constructing the transfer function whose poles and zeros are

equal to βN
i and βD

j , it becomes

Tp(s) =
(s/βN

0 + 1)(s/βN
1 + 1)

(s/βD
0 + 1)(s/βD

1 + 1)(s/βD
2 + 1)(s/βD

3 + 1)
.

Bode plots of T (s) and Tp(s) are shown in Fig. 2. There are

some errors near complex modes between T (s) and Tp(s).
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Fig. 1. Bode plots of G(s) and Gp(s) in Example 1.
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Fig. 2. Bode plots of T (s) and Tp(s) in Example 1.

This difference becomes larger in the case where the complex

poles and zeros are closely placed. ♣

In [4], [5],they have addressed that the pulsatances are very

useful for drawing the approximate frequency response plot

and then can be applied to the design procedure like the

CDM although it may have large error in some cases. Be-

cause the pulsatances are ratio of two adjacent coefficients of

polynomial, it is very easy to tune the controller parameters

so that meets the given frequency requirements. However, if

the plant has poor damping, the design approach based on

the pulsatances may result in unsatisfactory controller due

to large approximation error.

2.2. New pseudo-break frequency

Now, we represent a new pseudo-break frequency. As the

first step to proceed this, let us consider the following all
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pole transfer function of order n.

G(s) =
N(s)

D(s)
=

a0

ansn + an−1sn−1 + · · ·+ a1s + a0
. (8)

The frequency magnitude can be given by

|G(jω)|2 = G(jω)G(−jω)

=
a2
0

c2nω2n+c2
n−1ω2(n−1)+···+c21ω2+c20

. (9)

Taking the logarithm on both sides of (9), it becomes

log(|G(jω)|) = log(a0)− log(|D(jω)|), (10)

where

log|D(jω)| = 1

2
log(c2

nω2n + c2
n−1ω

2(n−1) + · · ·+ c2
1ω

2 + c2
0).

(11)

Here we define the asymptote of (11) as follows:

log|D(jω)| ≈ log|D(jω)|p := log|c0|+log|c1ω|+· · ·+log|cnωn|.
(12)

Every terms in right hand side of (12) are straight lines with

slopes 0, 1, 2, · · ·, which we will call the pseudo-asymptotes.

The unit of this slope is 6[dB/Oct] or 20[dB/Dec]. Then

the intersection of each two adjacent lines is defined as the

pseudo-break frequency. From (12)

ωp0 :=
c0

c1
, ωp1 :=

c1

c2
, · · · , ωpn−1 :=

cn−1

cn
. (13)

The following Example 2 shows pseudo-break frequencies

and pseudo-asymptotes of an all pole transfer function.

Example 2 Consider the following transfer function.

G(s) =
N(s)

D(s)
=

545

(s + 1)(s + 5)(s + 10 + j3)(s + 10− j3)

=
545

s4 + 26s3 + 234s2 + 754s + 545
.

Then we have

c0 = a0 = 545, c1 = −2a2a0 + a2
1 = 559.87,

c2 = 2a0 + a2
2 − 2a3a1 = 128.99,

c3 = a2
3 − 2a2 = 14, 42, c4 = 1.

Using (13), we obtain the pseudo-break points.

[ωp0 ωp1 ωp2 ωp3] = [0.97 4.34 8.94 14.42].

We see that the pseudo-break frequencies are very similar to

the real break points. The pseudo-break frequencies and the

pseudo-asymptotes have been depicted in Fig. 3 where

|Gk| := 20log(a0)− 20log|ckωk|, k = 0, 1, · · · , 4. ♣
Now our problem is to express the pseudo-break points in

terms of characteristic ratios and pulsatances. Recall the all

pole system in (8) and (9).

|G(jω)|2 =
a2
0

D(jω)D(−jω)
=

1

Q
2
(ω)

(14)

Define
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Fig. 3. Real magnitude curve and asymptotes of G(s) in

Example 2.

∆j
i :=

{
Πj

k=i,i<jαk, if 0 < i < j

αi, if 0 < i = j.
(15)

Using (6), (7), and (15),

Q
2
(ω) = 1 + η1τ

2
ω

2
+

η2τ4

(
∆1

1

)2 ω
4

+
η3τ6

(
∆1

1∆
2
1

)2 ω
6

+ · · ·

+
ηnτ2n

(
∆1

1∆
2
1∆

3
1 · · ·∆n−1

1

)2 ω
2n

(16)

where

ηk : = 1− 2

αk

+
2

αk∆k+1
k−1

− 2

αk∆k+1
k−1∆

k+2
k−2

+ · · ·

+(−1)
k 2

αkΠk−1
j=1 ∆k+j

k−j

. (17)

If we draw the approximated curve of |G(jω)| vs. frequency

by plotting each term in (16) with pseudo-asymptotes, a typ-

ical shape is as shown in Fig. 4.
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Fig. 4. Pseudo-asymptotic diagram of |G(jω)|.

From (11) and (13), the pseudo-break points in (16)are iden-

tical to

ωpi :=

√
ηi

ηi+1
· ∆i

1

τ
, i = 0, 1, · · · , n− 1. (18)

where η0 = 1 and ∆0
1 = 1. Let

li := log ωpi − log ωp(i−1), (19)

then we may write
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l0 = −
(
log τ +

1

2
log η1

)
(20)

li = log ηi − 1

2
(log ηi−1 + log ηi+1) + log αi, (21)

where i = 1, 2, · · · , n− 1.

Remark 1 It has been observed from eq.(17) that ηi ≈
ηi+1 for i = 1, 2, · · · , n − 1 as αi increases sufficiently larger

than 2. Under this condition, then li ≈ log αi and ωpi <

ωp(i+1) for all i. It results that the pseudo break points ωpi

lie in the form of sequential line-up. Since the time domain

responses of a strictly proper system are dominantly related

to the frequency magnitude at lower frequency than that

of which the magnitude has about −20[db], we know that

three values of l0, l1, l2 and l3 play a significant role in the

responses. Consequently, α1, α2, α3 and τ have much greater

influence than the rest. Indeed, α1, α2 and α3 are the most

dominant factors dictating the size of overshoot while τ can

be used approximately to consider bandwidth or speed of

response [6]. ♣
The main concept of pseudo-break frequency that has been

introduced for all pole transfer function so far can be ex-

tended to the general case. Let us consider N(s) of degree

m. Since |G(jω)|2 = N(jω)N(−jω)
D(jω)D(−jω)

, we have

log(|G(jω)|) = log(|N(jω)|)− log(|D(jω)|), (22)

where log(|D(jω)|) is the same as (11) and

log|N(jω)| = 1

2
log(f2

mω2m +f2
m−1ω

2(m−1)+ · · ·+f2
1 ω2+f2

0 ).

(23)

Then we can define the asymptote of (22) as follows:

log|G(jω)|≈ log|G(jω)|p := log|N(jω)|p − log|D(jω)|p
= {log|f0|+ log|f1ω|+ · · ·+ log|fmωm|}
−{log|c0|+ log|c1ω|+ · · ·+ log|cnωn|}. (24)

The pseudo-break points of numerator are separately defined

in the similar way as those of denominator.

3. Comparative examples
In this section, we will give several examples to evaluate

the proximity of new pseudo-break frequency and pseudo-

asymptotes by comparing with the real values. The nearness

of pulsatances defined by Naslin will be also compared with

true systems in the same examples.

Example 3 (The case of no zero and distinct, real

poles) Consider the all pole transfer function T1(s) with unit

DC gain whose poles are

−0.5, −3, −15, −50, −100, −300, −500

Real break points, pseudo-break point and pulsatances of

this transfer function are provided in Table 1. Fig. 5 shows

their Bode magnitude curves. It is seen that Both break

points and asymptotes closely approximate the actual values

in this well damped case. ♣

Table 1. Different break frequencies of T1(jω) in Ex. 3.

real break pseudo-break pulsatances

k points(ωk) points(ωpk) (βk)

1 0.5 0.493 0.41

2 3 2.976 2.684

3 15 14.49 12.2

4 50 46.15 39.67

5 100 104.99 108.12

6 300 275.94 302.15

7 500 593.91 968.5
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Fig. 5. Bode magnitude plots and asymptotes of T1(s) in

Ex. 3.

Example 4 (The case of no zero and three real plus
two pairs of complex poles) Consider the following trans-
fer function

T2(s) =
7.134 107

(s + 2)(s + 10)(s + 30)(s2 + 16s + 164)(s2 + 50s + 725)
.

Real break points, pseudo-break point and pulsatances of

T2(s) are provided in Table 2. Fig. 6 shows their Bode

magnitude curves. We can see through Table 2 and Fig. 6

that the pseudo-break points and pseudo-asymptotes ap-

proximate more closely than those of pulsatances in this case.

♣

Table 2. Different break frequencies of T2(jω) in Ex. 4.

real break pseudo-break pulsatances

k points(ωk) points(ωpk) (βk)

1 2 1.96 1.25

2 10 9.41 4.22

3 12.81 9.92 8.29

4 12.81 16.46 14.02

5 26.93 19.02 24.05

6 26.93 27.99 44.82

7 30 44.52 108

Example 5 (The case of no zero and 7 poles dis-

tributed around a circle in s-plane) Consider the trans-

fer function T3(s) with unit DC gain whose poles are

−10.405, − 7.3495± j7.3649, − 9.5887± j4.039,

−4.9236± j9.1659 .
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Fig. 6. Bode magnitude plots and asymptotes of T2(s) in

Ex. 4.

The pole locations of T3(s) are depicted in Fig. 7. Real

break points, pseudo-break point and pulsatances of T3(s)

are provided in Table 3. Fig. 8 shows their Bode magni-

tude curves. We can see through Table 3 and Fig. 8 that

the pseudo-break points and pseudo-asymptotes approxi-

mate much more closely than those of pulsatances in this

case. ♣
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Fig. 7. Pole diagram of T3(s) in Ex. 5.

Table 3. Different break frequencies of T3(jω) in Ex. 5.

real break pseudo-break pulsatances

k points(ωk) points(ωpk) (βk)

1 10.405 8.94 2

2 10.405 9.165 4.2

3 10.405 9.622 6.857

4 10.405 10.405 10.405

5 10.405 11.25 15.79

6 10.405 11.81 425.78

7 10.405 12.11 54.13

Example 6 (The case of 3 zeros and 7 poles) Here

we consider a transfer function T4(jω) including three zeros

with unit DC gain. Its zeros and poles are

Zeros : − 6, − 15± j10

Poles : − 2, − 10, − 30, − 8± j10, − 25± j10.
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Fig. 8. Bode magnitude plots and asymptotes of T3(s) in

Ex. 5.

As shown in Table 4 and Fig. 9, the pseudo break frequencies

and pseudo-asymptotes result in satisfactory approximation.

However, the error between real values and those by pul-

satances over the middle frequency range are significantly

larger than 3 [dB]. This is also verified by the Bode plots of

three transfer functions which are generated on the basis of

pseudo-break points and pulsatances respectively as shown

in Fig. 10. ♣
Table 4. Different break frequencies of T4(jω) in Ex. 6.

real break pseudo-break pulsatances

k points(ωk) points(ωpk) (βk)

1 6 5.76 3.86

Num. 2 18.03 16.91 14.03

3 18.03 20.02 36

1 2 1.96 1.25

2 10 9.406 4.22

3 12.806 9.922 8.29

Den. 4 12.806 16.462 14.02

5 26.926 19.016 24.05

6 26.926 27.99 44.824

7 30 44.52 108
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Fig. 9. Bode magnitude plots and asymptotes of T4(s) in

Ex. 6.

4. Concluding remark
In the standard Bode plot, the break points between asymp-

totic straight lines are composed of poles and zeros of the

transfer function. As like the usefulness of parametric stabil-

ity criteria [4], [7], if there are any methods that will be able
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Fig. 10. Bode plots of T4(s), T4pseudo(s), T4pulsa(s) in Ex. 6.

to estimate the break points directly from the coefficients of

transfer function instead of roots, such methods will be very

useful for some classical controller design problems with fre-

quency performance specifications. For the sake of this pur-

pose, we have introduced a new pseudo-break point which is

defined in terms of only the coefficients of transfer function.

Through comparative studies of the pseudo-break point and

the pulsatance defined by Naslin, it has been showed that

the approximation errors by the pseudo-break points are not

larger than about 3 [dB] and that the proposed one provides

much more effective approximation than that of the pulsa-

tance. However, the pulsatance is easier to use than the

pseudo-break point in applications since it is simply defined

by the ratio of adjacent two coefficients.
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