• Title/Summary/Keyword: frequency rainfall

Search Result 684, Processing Time 0.029 seconds

Evaluation for usefulness of Chukwookee Data in Rainfall Frequency Analysis (강우빈도해석에서의 측우기자료의 유용성 평가)

  • Kim, Kee-Wook;Yoo, Chul-Sang;Park, Min-Kyu;Kim, Dae-Ha;Park, Sangh-Young;Kim, Hyeon-Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1526-1530
    • /
    • 2007
  • In this study, the chukwookee data were evaluated by applying that for the historical rainfall frequency analysis. To derive a two parameter log-normal distribution by using historical data and modern data, censored data MLE and binomial censored data MLE were applied. As a result, we found that both average and standard deviation were all estimated smaller with chukwookee data then those with only modern data. This indicates that rather big events rarely happens during the period of chukwookee data then during the modern period. The frequency analysis results using the parameters estimated were also similar to those expected. The point to be noticed is that the rainfall quantiles estimated by both methods were similar, especially for the 99% threshold. This result indicates that the historical document records like the annals of Chosun dynasty could be valuable and effective for the frequency analysis. This also means the extension of data available for frequency analysis.

  • PDF

A Study on Estimation of Rainfall Erosivity Using Frequency Analysis for Hapcheon Gauging Station (빈도해석에 의한 합천관측소의 강우침식인자 산정 연구)

  • Ahn, Jung Min;Lee, Geun Suk;Lyu, Si Wan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.4
    • /
    • pp.19-27
    • /
    • 2012
  • RUSLE(Revised Universal Soil Loss Equation) has been widely used to estimate the soil loss amount of watersheds from rainfall erosivity, soil erodibility, topographic features and cropping management condition. Rainfall erosivity is the most dominant and sensitive factor among these so that the determination of reliable rainfall erosivity is essential to estimate the soil loss of watershed. Since there has been no criterion to determine the rainfall erosivity in Korea, the empirical values, determined from the relation between the annual average rainfall and erosivity or suggested by TBR(Transport Research Board), have been used for designing the erosion control structure and controlling the soil erosion for watersheds. In this study, the procedure for estimating the rainfall erosivity using frequency analysis is proposed. The most fitted distribution function, with calculated rainfall erosivities with various frequencies and durations, has been also selected. The suggested procedure can be used to estimate the optimal value of rainfall erosivity for RUSLE in order to design soil erosion structures and control the soil erosion in watersheds effectively.

Design Rainfall for Slope Stability Analysis and Its Application (사면안정해석을 위한 설계강우 산정과 적용방안)

  • Kim, Kyung-Suk;Jang, Hyun-Ick;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.957-965
    • /
    • 2008
  • Recently, slope stability analysis in current design criteria is criticized for its unrealistic assumption of groundwater table and slope stability analysis incorporating seepage analysis considering rainfall is gaining a recognition as an alternative. However, a reasonable method for determining the rainfall used in the seepage analysis has not yet been established. Rainfall input for seepage analysis is a time series of rainfall and is similar to the hyetograph which is usually obtained from hydrology. In this paper a method to obtain the hyetograph from the intensity-duration-frequency is proposed. The resulting hyetograph can be used in the in the slope design stage. Also some considerations for practical application of slope stability analysis considering the rainfall is included.

  • PDF

On the Change of Flood and Drought Occurrence Frequency due to Global Warming : 2. Estimation of the Change in Daily Rainfall Depth Distribution due to Global Warming (지구온난화에 따른 홍수 및 가뭄 발생빈도의 변화와 관련하여 : 2. 지구 온난화에 따른 일강수량 분포의 변화 추정)

  • Yun, Yong-Nam;Yu, Cheol-Sang;Lee, Jae-Su;An, Jae-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.627-636
    • /
    • 1999
  • In 60 years when the double $CO_2$concentration is anticipated the average annual rainfall depth is expected to be increased by 5 10% due to global warming. However, in the water resources area the frequency change of meteorological extremes such as droughts and floods attracts more interests than the increase of annual rainfall amount. Even though recent frequent occurrences of this kind of meteorological extremes are assumed as an indirect proof of global warming, the prediction of its overall tendency has not yet been made. Thus, in this research we propose a possible methodology to be used for its prediction. The methodology proposed is based on the frequency distribution of daily rainfall be Todorovie and Woolhiser(1975), and Katz(1977), where the input parameters are modified to consider the change of monthly or annual rainfall depth and, thus, to result in the change of frequency distribution. We adopt two values(10mm, 50mm) as thresholds and investigate the change of occurrence probability due to the change monthly and annual rainfall depth. these changes do not directly indicate the changes of occurrence probability of floods and droughts, but it may still be a very useful information for their prediction. Finally, the changes of occurrence probability were found to be greater when considering the monthly rainfall rather than the annual rainfall, and those in rainy season than those in dry season.

  • PDF

Probability Distribution of Rainfall Events Series with Annual Maximum Continuous Rainfall Depths (매년최대 연속강우량에 따른 강우사상 계열의 확률분포에 관한 연구)

  • 박상덕
    • Water for future
    • /
    • v.28 no.2
    • /
    • pp.145-154
    • /
    • 1995
  • The various analyses of the historical rainfall data need to be utilized in a hydraulic engineering project. The probability distributions of the rainfall events according to annual maximum continuous rainfall depths are studied for the hydrologic frequency analysis. The bivariate normal distribution, the bivariate lognormal distribution, and the bivariate gamma distribution are applied to the rainfall events composed of rainfall depths and its durations at Kangnung, Seoul, Incheon, Chupungnyung, Teagu, Jeonju, Kwangju, and Busan. These rainfall events are fitted to the the bivariate normal distribution and the bivariate lognormal distribution, but not fitted to the bivariate gamma distribution. Frequency curves of probability rainfall events are suggested from the probability distribution selected by the goodness-of-fit test.

  • PDF

Estimation of Probability Precipitation by Regional Frequency Analysis using Cluster analysis and Variable Kernel Density Function (군집분석과 변동핵밀도함수를 이용한 지역빈도해석의 확률강우량 산정)

  • Oh, Tae Suk;Moon, Young-Il;Oh, Keun-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2B
    • /
    • pp.225-236
    • /
    • 2008
  • The techniques to calculate the probability precipitation for the design of hydrological projects can be determined by the point frequency analysis and the regional frequency analysis. Probability precipitation usually calculated by point frequency analysis using rainfall data that is observed in rainfall observatory which is situated in the basin. Therefore, Probability precipitation through point frequency analysis need observed rainfall data for enough periods. But, lacking precipitation data can be calculated to wrong parameters. Consequently, the regional frequency analysis can supplement the lacking precipitation data. Therefore, the regional frequency analysis has weaknesses compared to point frequency analysis because of suppositions about probability distributions. In this paper, rainfall observatory in Korea did grouping by cluster analysis using position of timely precipitation observatory and characteristic time rainfall. Discordancy and heterogeneity measures verified the grouping precipitation observatory by the cluster analysis. So, there divided rainfall observatory in Korea to 6 areas, and the regional frequency analysis applies index-flood techniques and L-moment techniques. Also, the probability precipitation was calculated by the regional frequency analysis using variable kernel density function. At the results, the regional frequency analysis of the variable kernel function can utilize for decision difficulty of suitable probability distribution in other methods.

A development of nonstationary rainfall frequency analysis model based on mixture distribution (혼합분포 기반 비정상성 강우 빈도해석 기법 개발)

  • Choi, Hong-Geun;Kwon, Hyun-Han;Park, Moon-Hyung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.11
    • /
    • pp.895-904
    • /
    • 2019
  • It has been well recognized that extreme rainfall process often features a nonstationary behavior, which may not be effectively modeled within a stationary frequency modeling framework. Moreover, extreme rainfall events are often described by a two (or more)-component mixture distribution which can be attributed to the distinct rainfall patterns associated with summer monsoons and tropical cyclones. In this perspective, this study explores a Mixture Distribution based Nonstationary Frequency (MDNF) model in a changing rainfall patterns within a Bayesian framework. Subsequently, the MDNF model can effectively account for the time-varying moments (e.g. location parameter) of the Gumbel distribution in a two (or more)-component mixture distribution. The performance of the MDNF model was evaluated by various statistical measures, compared with frequency model based on both stationary and nonstationary mixture distributions. A comparison of the results highlighted that the MDNF model substantially improved the overall performance, confirming the assumption that the extreme rainfall patterns might have a distinct nonstationarity.

Application of EDA Techniques for Estimating Rainfall Quantiles (확률강우량 산정을 위한 EDA 기법의 적용)

  • Park, Hyunkeun;Oh, Sejeong;Yoo, Chulsang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4B
    • /
    • pp.319-328
    • /
    • 2009
  • This study quantified the data by applying the EDA techniques considering the data structure, and the results were then used for the frequency analysis. Although traditional methods based on the method of moments provide very sensitive statistics to the extreme values, the EDA techniques have an advantage of providing very stable statistics with their small variation. For the application of the EDA techniques to the frequency analysis, it is necessary to normalization transform and inverse-transform to conserve the skewness of the raw data. That is, it is necessary to transform the raw data to make the data follow the normal distribution, to estimate the statistics by applying the EDA techniques, and then finally to inverse-transform the statistics of transformed data. These statistics decided are then applied for the frequency analysis with a given probability density function. This study analyzed the annual maxima one hour rainfall data at Seoul and Pohang stations. As a result, it was found that more stable rainfall quantiles, which were also less sensitive to extreme values, could be estimated by applying the EDA techniques. This methodology may be effectively used for the frequency analysis of rainfall at stations with especially high annual variations of rainfall due to climate change, etc.

Derivation of Minutely Rainfall Intensity-Duration-Frequency Relationships by Applying the Moupfouma Distribution (모포마 분포를 적용한 분단위 강우강도-지속시간-재현기간 관계의 유도)

  • Yoo, Chul-Sang;Park, Chang-Yeol;Kim, Kyoung-Jun;Jun, Kyung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.8
    • /
    • pp.643-654
    • /
    • 2007
  • This study proposes and evaluates a methodology for deriving the rainfall intensity- duration-frequency relationship for durations less than 10 minutes used for designing drainage systems in small urban catchments and roads. The method proposed in this study is based on the Moupfouma distribution, which has been evaluated by applying it to the rainfall data at the meteorological Seoul station. Summarizing the results is as follows: (1) The frequency analysis results using minutely rainfall data was found not to be corresponded with the extrapolation of that by the Ministry of Construction and Transportation (2000). (2) The annual maxima minutely rainfall data derived by applying the Moupfouma distribution to the accumulated 60-minute data was found to well reproduce the characteristics of those of observed. (3) The rainfall intensity-duration-frequency relationship derived by applying the Moufouma distribution to the accumulated 50-minute data and hourly data was found insignificant.

An Analysis of the Characteristics in Design Rainfall According to the Data Periods (자료기간에 따른 확률 강우량 변화 특성 분석)

  • Oh, Tae-Suk;Kim, Min-Seok;Moon, Young-Il;Ahn, Jae-Hyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.115-127
    • /
    • 2009
  • Recently, Natural disasters are increasing the damage according to the influence of the abnormal climate and climate change. This study analyzed change characteristic of Design Rainfall according to the different data periods. First, 14 observatories were selected at Meteorological Administration. Second, frequency analysis carried out 5 cases by different data periods. At the results of the frequency analysis, the design rainfall could confirm the increase in most areas of Korea. Also, the change and trend analysis carried out for characteristic analysis by design rainfall and observed rainfall. The change and trend analysis of observed annual maximum rainfall did not appeared, but the change and trend analysis of design rainfall significantly appeared using statistic methods. The result of the change and trend analysis, design rainfall increased in most areas of Korea. Although, it could be the necessity for reestimating defense ability of flood, existing river systems, and new establishment of structure about the change characteristic.