DOI QR코드

DOI QR Code

A Study on Estimation of Rainfall Erosivity Using Frequency Analysis for Hapcheon Gauging Station

빈도해석에 의한 합천관측소의 강우침식인자 산정 연구

  • Ahn, Jung Min (Department of Civil Engineering Changwon National University) ;
  • Lee, Geun Suk (Korea Rural Community Corporation) ;
  • Lyu, Si Wan (Department of Civil Engineering Changwon National University)
  • Received : 2012.08.29
  • Accepted : 2012.12.11
  • Published : 2012.12.30

Abstract

RUSLE(Revised Universal Soil Loss Equation) has been widely used to estimate the soil loss amount of watersheds from rainfall erosivity, soil erodibility, topographic features and cropping management condition. Rainfall erosivity is the most dominant and sensitive factor among these so that the determination of reliable rainfall erosivity is essential to estimate the soil loss of watershed. Since there has been no criterion to determine the rainfall erosivity in Korea, the empirical values, determined from the relation between the annual average rainfall and erosivity or suggested by TBR(Transport Research Board), have been used for designing the erosion control structure and controlling the soil erosion for watersheds. In this study, the procedure for estimating the rainfall erosivity using frequency analysis is proposed. The most fitted distribution function, with calculated rainfall erosivities with various frequencies and durations, has been also selected. The suggested procedure can be used to estimate the optimal value of rainfall erosivity for RUSLE in order to design soil erosion structures and control the soil erosion in watersheds effectively.

RUSLE는 강우침식, 토양침식, 지형적 특징, 경작관리 등과 같은 유역 토양유실량 산정에 널리 사용되어 왔다. RUSLE 관련 매개변수 중 강우침식인자는 가장 민감도가 큰 요소로 그 신뢰성을 높이는 것은 정확한 유역 토양유식량 산정을 위한 필수조건이다. 국내에서는 유역의 토양침식을 조절하고 토양유실량 산정을 위한 강우침식인자 산정에 대한 명확한 기준이 마련되어 있지 않고 연평균 강우량과 침식인자의 관계식을 이용하거나 TRB에서 제안한 방법을 이용하고 있다. 본 연구에서는 빈도분석을 이용하여 강우침식인자를 산정하는 절차를 제안하였다. 다양한 재현빈도와 지속기간에 대해 계산된 강우침식인자는 지속시간에 따라 정규분포 형태로 나타났기 때문에 확률분포함수를 이용해서 강우침식인자를 산정할 수 있도록 적합분포함수를 제안하였다. 본 연구에서 제안한 방법을 통하여 유역의 토양유식을 효과적으로 조절하고 구조물에 대한 설계토양유실량을 계산하기 위한 최적의 강우침식인자를 산정할 수 있을 것으로 사료된다.

Keywords

References

  1. Angulo-Martinez M., Lopez-Vicente M., Vicente- Serrano S. M. and Begueria S., 2009, Mapping rainfall erosivity at a regional scale: a comparison of interpolation methods in the Basin(NE Spain), Hydrology and Earth System Sciences, Vol 13, pp. 1907-1920. https://doi.org/10.5194/hess-13-1907-2009
  2. Bagarello, V., Ferro, V., 2004, Plot-scale measurement of soil erosion at the experimental area of Sparacia (southern Italy). Hydrol. Process. Vol. 18, pp. 141- 157. https://doi.org/10.1002/hyp.1318
  3. Brown, L.C. and Foster, G.R., 1987, Storm erosivity using idealized intensity distributions. Transactions of the American Society of Agricultural Engineers, Vol. 30, pp. 379-386. https://doi.org/10.13031/2013.31957
  4. Choi, H. K. and Park, S. J. and Guk, S. P., 2010, The estimation of soil runoff in the Man-dae Cheun basin by the using RISLE method, Kangwon Univ. Institute of Industrial Technology, Vol. 30, No, b, pp. 99-108.
  5. Hwang, C. S. and Kim, K. T. and Oh, C. Y. and Jin, C. G. and Choi, C. U., 2010, A study on correlation between RUSLE and estuary in Nakdong River watershed, Journal of The Korean Society for Geo-Spatial Information System, Vol. 18, No, 3, pp. 3-10.
  6. Houze, R.A., Hobbs, P.V., Parsons, D.B. and Herzeg, P.H., 1979, Size distribution of precipitation particles in frontal clouds. Journal of Atmospheric Science, Vol. 36, pp. 156-162. https://doi.org/10.1175/1520-0469(1979)036<0156:SDOPPI>2.0.CO;2
  7. Huff, F.A., 1967, Time distribution of rainfall in heavy storms, Water Resources. Res., Vol. 3, No. 4, pp. 1007-1019. https://doi.org/10.1029/WR003i004p01007
  8. Jung, K.H., Kim, W.T., Hur, S.O., Ha, S.K., Jung, P.K., and Jung, Y.S., 2004, USLE/RUSLE factors for national scale soil loss estimation based on the digital detailed soil map. Korean. J. Soil. Sci. Fert. Vol. 37, No. 4, pp. 199-206.
  9. Jung, P, K. and Ko, M. H. Im, J. N. and Um, K. T. and Choi, D. U., 1983, Rainfall erosion factor for estimating soil loss. J. Korean Society of Soil Science and Fertilizer, Vol. 16, No, 2, pp. 112-118.
  10. Khongor Tsogt, Chinsu Lin, Narangarav Dugarsuren, Tsogt Zandraabal, 2011, Larch stand structure analysis of boreal forest in Mongolia, 2011 2nd International Conference on Environmental Science and Technology. pp. 123-127.
  11. Kim, C. W and Woo, H. S and Sonu, J. H, 1999, Estimation of rainfall erosivity in USLE. Journal of Korea Water Resources Association, Korea Water Resources Association, Vol. 32, No. 4, pp. 457-467.
  12. Laws, J.O. and Parsons, D.A., 1943, The relationship of raindrop size to intensity. Transactions of the American Geophysical Union Vol. 24, pp. 452-460. https://doi.org/10.1029/TR024i002p00452
  13. Marshall, J.S. and Palmer, W.M., 1948, Relation of rain drop size to intensity. Journal of Meteorology, Vol. 5, pp. 165-166. https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
  14. McGregor, K.C.R., Bingner, A.J., Bowie, A.J., Foster, G.R., 1995, Erosivity index values for Northern Mississippi. Trans. ASAE, Vol. 38, No. 4, pp. 1039-1047. https://doi.org/10.13031/2013.27921
  15. Meusburger K., Steel A., Panagos P., Montnnarella L. and Alewell C., 2012, Spatial and temporal variability of rainfall erosivity factor for Switzerland, Hydrology and Earth System Sciences, Vol. 16, pp. 167-177. https://doi.org/10.5194/hess-16-167-2012
  16. Ministry of Environment, 2012, 표토의 침식 현황 조사 및 대책 등에 관한 고시 제정안 의견조회.
  17. Ministry of Land, Transport and Maritime Affairs, 2000, 지역별 설계 강우의 시간분포. Korea Institute of Construction Technology.
  18. Ministry of Land, Transport and Maritime Affairs, 2012, 설계홍수량 산정요령(안).
  19. National Emergency Management, 2005, 재해영향평가 실무지침서.
  20. National Institute for Disaster Prevention, 1998a, 토사의 물리적 화학적 성질 및 이동특성 조사분석 및 해외토사유출 산정기법, Ministry of Government Administration and Home Affairs.
  21. National Institute for Disaster Prevention, 1998b, 개발에 따른 토사유출량 산정에 관한 연구(I). Ministry of Government Administration and Home Affairs.
  22. Park, J. H. and Woo, H. S. and Pyun, C. K. and Kim, K. I., 2000, A study of distribution of rainfall erosivity in USLE/RUSLE for estimation of soil loss. Journal of Korea Water Resources Association, Korea Water Resources Association, Vol. 33, No, 5, pp. 603-510.
  23. Renard, K.G., Freimund, J.R., 1994, Using monthly precipitation data to estimate the R factor in the revised USLE. J. Hydrol. Vol. 157, pp. 287-306. https://doi.org/10.1016/0022-1694(94)90110-4
  24. Son, K. I., 2001, Applicability examination of the RUSLE sediment yield prediction equations in Korea, Journal of Korea Water Resources Association, Korea Water Resources Association, Vol. 34, No, 3, pp. 199-207.
  25. TRB, 1980, Design of sedimentation basins, National Cooperative Highway Research Program Synthesis of Highway Practice, Vol. 70, transport Research Board.
  26. Yu, B., 1999, A comparison of the R-factor in the universal soil loss equation and revised universal soil loss equation. Trans. ASAE, Vol. 42, No. 6, pp. 1615-1620. https://doi.org/10.13031/2013.13327
  27. Wischmeier, W. H., 1959, A rainfall erosion index for a universal soil loss equation. Soil Sci. Soc. Am. Proc. Vol. 23, No. 3, 246-249. https://doi.org/10.2136/sssaj1959.03615995002300030027x
  28. Wischmeier, W.H., Smith, D.D.,1978, Predicting rainfall erosion losses. A guide to conservation planning. US Dept. Agric. Agricultural Handbook, pp. 537.