• Title/Summary/Keyword: frequency measurement

Search Result 4,244, Processing Time 0.027 seconds

Design and Implementation of ELF Digital Magnetic Fields Meter (극저주파 디지털 자계 측정기의 설계 및 구현)

  • Im, Jae-Yoo;Hwang, Jung-Hwan;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.84-88
    • /
    • 2015
  • In this paper, we present that design and implementation of digital extreme-low-frequency (ELF) magnetic meter including wireless monitoring feature. In our lifetime, it is necessary to study how much magnetic field effects to human body. In this paper, we use 3-axis coil-type magnetic sensor, magnetic measurement range is 0.03~10uT and frequency range is 40~180Hz. As magnetic sensor characteristic, frequency loss is occurred that compensated using digital equalize based on DSP processor. Measurement value can be monitored on PC through Wifi communication and measurement error is observed within 6%.

A Study of the Boring Bar Vibration Measurement using Optical Fiber Sensor (보링바 고유진동 계측을 위한 광섬유 진동센서 연구)

  • Song, Doo-Sang;Hong, Jun-Hee;Jeong, Hwang-Young;Kang, Dae-Hwa;Kim, Byung-In
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.107-113
    • /
    • 2009
  • In this paper, we studied of measurement the vibration of natural frequency using optical fiber sensor. The boring bar for measurement of vibration in use optical fiber sensor has the advantage of direct measure for the frequency than accelerometer. Because it deal with output value on electrical signal of optical fiber in physical disturbance when it measures the frequency of vibration. The optical fiber sensor measured the vibration of boring bar by the gap in sensing jig while optical fiber just kept contact with boring bar. A prototype system was composed of jig part with gap and optical system part. In this paper, we found out the possibility to measurement of vibration by the gap in use optical fiber.

Implementation of Precise Level Measurement Device using Zoom FFT (Zoom FFT를 이용한 정밀 레벨 측정 장치의 구현)

  • Ji, Suk-Joon;Lee, John-Tark
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.504-511
    • /
    • 2012
  • In this paper, level instrument is implemented using beat frequency for distance measurement which means the difference between Tx and Rx signal frequency from FMCW Radar Level Transmitter. Beat frequency is analyzed through Fast Fourier Transform of which frequency precision can be improved by applying Zoom FFT. Distance precision is improved from 146.5[mm] to 5[mm] using the advantage of Zoom FFT which can raise the frequency precision without changing the sampling frequency or FFT point number to be fixed in the beginning of designing signal processing. Also, measurement error can be reduced within 2[mm] by incresing the FFT points using the method of Spline interpolation. For verifying the effectiveness of this Zoom FFT to FMCW Radar Level Transmitter, test bench is made to measure the distance for every 1[mm] between 700[mm] and 2000[mm] and measurement error can be checked in the range of ${\pm}2$[mm].

Design and Fabrication of a C-Band Delay Line Instantaneous Frequency Measurement Receiver with Offset Voltage Compensation (오프셋 전압 보상이 적용된 지연 선로 구조의 C 대역 순시 주파수 측정용 수신기 설계 및 제작)

  • Jeon, Moon-Su;Jeon, Yeo-Ok;Seo, Won-Gu;Bae, Kyung-Tae;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.1
    • /
    • pp.42-49
    • /
    • 2016
  • In this paper, we design and fabricate an instantaneous frequency measurement receiver with a frequency resolution of 125 MHz which detects and measures continuous signals in 4~6 GHz using path difference of delay lines. The receiver has a 4-bit configuration and consists of power dividers, delay lines, power combiners, power detectors, voltage comparator circuits and so on. The accuracy of the instantaneous frequency measurement is improved by applying offset voltage compensation to the comparator circuits to compensate the frequency-dependent path loss of the delay line and the frequency dependence of power detection.

Measurement of Concrete Thickness at Different Frequency Ranges Using Radar (레이더의 주파수대역 변화에 따른 콘크리트 시편의 두께측정)

  • 김유석;임흥철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.773-778
    • /
    • 1998
  • For imaging of concrete specimens using radar, the principles of radar, microwave, and the electromagnetic properties of concrete are discussed. Experimental data obtained from radar measurement of concrete specimens with no steel bars at three different frequency bandwidths of 2~3.4 GHz, 3.4~5.8 GHz and 8~12 GHz are processed to determine the thickness of the specimens. A signal processing scheme has been implemented to visualize the concrete specimens. The purpose of this study is to determine particular frequency range appropriate for measuring the thickness of concrete specimens using radar.

  • PDF

Laser Doppler blood flowmeter using self-mixing effect for the measurement of tissue blood flow. (조직혈류측정을 위한 자기혼합형 레이저 도플러 혈류계의 검토.)

  • Ko, Han-Woo;Choi, Duck-Hee
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.11
    • /
    • pp.67-70
    • /
    • 1993
  • This preliminary study describes the self-mixing effect of laser diode for the measurement of tissue blood flow. A self-mixing effect of laser diode was detected by the single-mode laser diode and the moving target, and the Doppler shifted frequency was thanked linearly with the driving frequency of speaker. The measured Doppler shifted frequency was compared with the simulated data.

  • PDF

Periodic Mixed Waveform Measurement Techniques for Compact Radar Transmitter with Phase-Continuous Signal (소형 레이더 송신기의 연속 위상을 갖는 주기성 혼합 파형 측정 기법)

  • Kim, So-Su;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.6
    • /
    • pp.661-670
    • /
    • 2013
  • In this paper, we propose the measurement techniques of mixed waveform. Mixed waveform has phase-continuous periodic waveform with fixed frequency signal and Linear Frequency Modulation(LFM) signal. This waveform is generated from a compact radar transmitter with frequency synthesizer and high power amplifier. Frequency synthesizer generates various signal waveform with continuos phase and high power amplifier amplify transmitting signal. First, we describe a compact radar transmitter with the phase-continuos signal and then verify the distortion characteristic of pulse compression by the mismatch of LFM waveform. Second, we describe three kinds of measurement techniques for measuring LFM waveform. These techniques include methods using signal analyzer, signal source analyzer and new methods using RF mixer and phase shifter. Finally, we verify the accuracy of the measurement technique from the pulse compression result of receiving signal.

A Measure for Improvement in Accuracy by Performance Evaluation of a DPRMs (말뚝 변위 측정시스템의 진동 평가에 의한 정확도 향상 대책)

  • Choi Youngsam;Chung Jintai;Lee Kyeyoung;Han Changsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1653-1659
    • /
    • 2005
  • In this study, the performance of a DPRMs is evaluated and the measurement precision for the pile driving is presented. The DPRMs is a visual-measurement system for the pile rebound and the penetration movement using a high speed line-scan camera. The DPRMs generates the measurement deviation. It is caused by the strong impact for the pile driving. To reduce it, the vibration signal analysis about the pile driving is performed. As a result, it is confirmed that the tilting frequency of a camera-tripod structure corresponding to excitation frequency range of the ground is under 40Hz. Through the structure modification, the camera-tripod structure is redesigned to the model being free itself from the excitation frequency range of the ground. By the verification testing about the improvement effects, it is inspected that the tilting and measurement deviation of the redesigned DPRMs are reduced.

A Study on Estimation of Doppler Frequency in a Current Velocity Measurement Radar (유속 측정 레이다에서의 도플러 주파수 추정에 관한 연구)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1551-1557
    • /
    • 2013
  • A current velocity measurement radar estimates Doppler frequencies to extract the corresponding surface velocity information. Therefore, it is required to maintain the high degree of reliability and accuracy of Doppler frequency estimates. However, Doppler spectra of water surface return echoes can have very widely varying shapes according to measurement environments and weather conditions. Therefore, serious problems may arise in maintaining the reliability and accuracy of conventional velocity estimating algorithm in a radar sensor. Therefore, in this paper, a newly suggested algorithm is proposed for improvement using estimation of peak Doppler frequencies. The proposed method shows that the more accurate velocity measurement can be possible comparing with the conventional one.

The Modeling of the Differential Measurement of Air Pressure for Non-intrusive Sleep Monitoring Sensor System

  • Chee, Young-Joon;Park, Kwang-Suk
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.6
    • /
    • pp.373-381
    • /
    • 2005
  • The respiratory and heart beat signals are the fundamental physiological signals for sleep monitoring in the home. Using the air mattress sensor system, the respiration and heart beat movements can be measured without any harness or sensor on the subject's body which makes long term measurement difficult and troublesome. The differential measurement technique between two air cells is adopted to enhance the sensitivity. The concept of the balancing tube between two air cells is suggested to increase the robustness against postural changes during the measurement period. With this balancing tube, the meaningful frequency range could be selected by the pneumatic filter method. The mathematical model for the air mattress and balancing tube was suggested and the validation experiments were performed for step and sinusoidal input. The results show that the balancing tube can eliminate the low frequency component between two cells effectively. This technique was applied to measure the respiration and heart beat on the bed, which shows the potential applications for sleep monitoring device in home. With the analysis of the waveform, respiration intervals and heart beat intervals were calculated and compared with the signal from conventional methods. The results show that the measurement from air mattress with balancing tube can be used for monitoring respiration and heart beat in various situations.