• Title/Summary/Keyword: frequency and mode

Search Result 4,225, Processing Time 0.03 seconds

Vibration-based delamination detection of composites using modal data and experience-based learning algorithm

  • Luo, Weili;Wang, Hui;Li, Yadong;Liang, Xing;Zheng, Tongyi
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.685-697
    • /
    • 2022
  • In this paper, a vibration-based method using the change ratios of modal data and the experience-based learning algorithm is presented for quantifying the position, size, and interface layer of delamination in laminated composites. Three types of objective functions are examined and compared, including the ones using frequency changes only, mode shape changes only, and their combination. A fine three-dimensional FE model with constraint equations is utilized to extract modal data. A series of numerical experiments is carried out on an eight-layer quasi-isotropic symmetric (0/-45/45/90)s composited beam for investigating the influence of the objective function, the number of modal data, the noise level, and the optimization algorithms. Numerical results confirm that the frequency-and-mode-shape-changes-based technique yields excellent results in all the three delamination variables of the composites and the addition of mode shape information greatly improves the accuracy of interface layer prediction. Moreover, the EBL outperforms the other three state-of-the-art optimization algorithms for vibration-based delamination detection of composites. A laboratory test on six CFRP beams validates the frequency-and-mode-shape-changes-based technique and confirms again its superiority for delamination detection of composites.

Study on The Damage Location Detection of Shear Building Structures Using The Degradation Ratio of Story Stiffness (층강성 손상비를 이용한 전단형 건물의 손상위치 추정에 관한 연구)

  • Yoo, Seok-Hyung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.2
    • /
    • pp.3-10
    • /
    • 2018
  • Damage location and extent of structure could be detected by the inverse analysis on dynamic response properties such as frequencies and mode shapes. In practice the measured difference of natural frequencies represent the stiffness change reliably, however the measured mode shape is insensitive for stiffness change, but provides spatial information of damage. The damage detection index on shear building structures is formulated in this study. The damage detection index could be estimated from mode shape and srory stiffness of undamaged structure and frequency difference between undamaged and damaged structure. For the verification of the observed damage detection method, the numerical analysis of Matlab and MIDAS and shacking table test were performed. In results, the damage index of damaged story was estimated so higher than undamaged stories that indicates the damaged story apparently.

A Study on Phugoid Mode in Longitudinal Axis of T-50 (T-50 세로축 장주기 모드 운동 특성에 관한 연구)

  • Kim, Jong-Seop;Hwang, Byeong-Mun;Kim, Seong-Jun;Heo, Gi-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.25-32
    • /
    • 2006
  • An advanced method of Relaxed Static Stability (RSS) is utilized for improving the aerodynamic performance of modern version supersonic jet fighter aircraft. The flight control system utilize RSS criteria in both longitudinal and lateral-directional axes to achieve performance enhancements and improve stability. The T-50 advanced trainer employs the RSS concept in order to improve the aerodynamic performance and the flight control law in order to guarantee aircraft stability. The longitudinal two modes are the short period with high frequency and the phugoid mode with low frequency. The design goals of longitudinal control laws is concerned with the short period damping and frequency optimization using lower order equivalent system and utilizing the requirement of MIL-F-8785C. Analysis of short period mode has been and continues to be performed This paper addresses the analysis of aircraft phugoid node characteristics such as damping, natural frequency, and analysis of aircraft pitch motion that impacted by angle of attack limiter and auto pitch attitude control law.

A Study on the Modal Analysis of Suspension Assembly by Finite Element Method (유한요소법에 의한 서스펜션 에셈블리의 모드해석에 관한 연구)

  • 김광식;오재응;조준호;최상렬
    • Journal of KSNVE
    • /
    • v.2 no.3
    • /
    • pp.223-230
    • /
    • 1992
  • Vibration problems in the Hard Disk Drive which is magnetic recording device have been raised gradually while HDD is required high density and low access time. As a typical thing, lateral bending or sway mode of supension causes tracking error, and therefore it is necessary to identify the accurate vibration characteristics of that mode. In this study, as the solution of vibration problem, decoupling sway mode and vicinity mode is dealt with. Shifting sway mode to high frequency region is studied.

  • PDF

Evaluation of vertical dynamic characteristics of cantilevered tall structures

  • Li, Q.S.;Xu, J.Y.;Li, G.Q.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.4
    • /
    • pp.357-372
    • /
    • 2001
  • In this paper, cantilevered tall structures are treated as cantilever bars with varying cross-section for the analysis of their free longitudinal (or axial) vibrations. Using appropriate transformations, exact analytical solutions to determine the longitudinal natural frequencies and mode shapes for a one step non-uniform bar are derived by selecting suitable expressions, such as exponential functions, for the distributions of mass and axial stiffness. The frequency equation of a multi-step bar is established using the approach that combines the transfer matrix procedure or the recurrence formula and the closed-form solutions of one step bars, leading to a single frequency equation for any number of steps. The Ritz method is also applied to determine the natural frequencies and mode shapes in the vertical direction for cantilevered tall structures with variably distributed stiffness and mass. The formulae proposed in this paper are simple and convenient for engineering applications. Numerical example shows that the fundamental longitudinal natural frequency and mode shape of a 27-storey building determined by the proposed methods are in good agreement with the corresponding measured data. It is also shown that the selected expressions are suitable for describing the distributions of axial stiffness and mass of typical tall buildings.

Instabilities of High-speed Impinging Circular Jets (고속 원형충돌제트의 불안정 특성)

  • 임정빈;권영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.256-262
    • /
    • 1997
  • The characteristics of the unstable impinging circular jet were investigated based on the frequency characteristics and the sound field of the impinging-tones. Two symmetric modes Si and S2, associated with low frequency and high frequency respectively, and one helical mode H have been observed by measuring frequency and phase-distribution around the jet. Radiation characteristics of impinging-tone were studied by measuring axial directivity. It was founded that the radiation patterns of symmetric and helical mode are different and it is toward the plate as the impinging distance increased. By estimating the convection velocity of the unstable jet, it was founded that the convection speed decreases with the frequency and its decreasing pattern varies with unstable modes S1, S2 and H, respectively.

  • PDF

Design of Dual-Mode Digital Down Converter for WCDMA and cdma2000

  • Kim, Mi-Yeon;Lee, Seung-Jun
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.555-559
    • /
    • 2004
  • We propose an efficient digital IF down converter architecture for dual-mode WCDMA/cdma2000 based on the concept of software defined radio. Multi-rate digital filters and fractional frequency conversion techniques are adopted to implement the front end of a dual-mode receiver for WCDMA and cdma2000. A sub-sampled digital IF stage was proposed to support both WCDMA and cdma2000 while lowering the sampling frequency. Use of a CIC filter and ISOP filter combined with proper arrangement of multi-rate filters and common filter blocks resulted in optimized hardware implementation of the front end block in 292k logic gates.

Current Control Scheme of High Speed SRM Using Low Resolution Encoder

  • Khoi, Huynh Khac Minh;Ahn, Jin-Woo;Lee, Dong-Hee
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.520-526
    • /
    • 2011
  • This paper presents a balanced soft-chopping circuit and a modified PI controller for a high speed 4/2 Switched Reluctance Motor (SRM) with a 16 pulse per revolution encoder. The proposed balanced soft-chopping circuit can supply double the switching frequency in the fixed switching frequency of power devices to reduce current ripple. The modified PI controller uses maximum voltage, back-emf voltage and PI control modes to overcome the over-shoot current due to the time delay effect of current sensing. The maximum voltage mode can supply a fast excitation current with consideration of the hardware time delay. Then the back-emf voltage mode can suppress the current over-shoot with consideration of the feedback signal delay. Finally, the PI control mode can adjust the phase current to a desired value with a fast switching frequency due to the proposed balanced soft-chopping technology.

Electrical Characteristics of 3rd Overtone Mode Energy-trapped High Frequency Filter using PbTiO3 System Ceramics (PbTiO3계 세라믹스를 이용한 3차 진동모드 에너지 트랩형 고주파필터의 전기적 특성)

  • 오동언;류주현;윤현상;박창엽;이수호;김종선;정회승
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.593-598
    • /
    • 2003
  • In this paper, 3rd overtone mode energy-trapped filter using modified PbTiO$_3$ system ceramics was manufactured to apply for intermediate frequency(IF) SMD type fillet with splitted electrode and gap size. To investigate the effects of splitted electrode and gap size on filter characteristics of 3rd overtone mode energy-trapped filter, ceramic wafers were fabricated by etching splitted rectangular electrode size(b$\times$d) of b=0.4, 0.6, 0.8, 1mm, d=0.3, 0.4, 0.5, 0.6mm and gap size(c) c=0.2, 0.3, 0.4, 0.6mm, respectively. And then, SMD type ceramic filter were fabricated with the size of 3.7$\times$3.1$\textrm{mm}^2$. SMD type ceramic filter with the size of b=0.8mm, d=0.4mm and gap(c)=0.4mm, which showed insertion loss of 2.951dB, 3dB bandwidth of 54.7kHz and 20dB stop bandwidth of 129.27kHz, was suitable for IF bandpass filter application.

Polar Transmitter with Differential DSM Phase and Digital PWM Envelope

  • Zhou, Bo;Liu, Shuli
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.3
    • /
    • pp.313-321
    • /
    • 2014
  • A low-power low-cost polar transmitter for EDGE is designed in $0.18{\mu}m$ CMOS. A differential delta-sigma modulator (DSM) tunes a three-terminal voltage-controlled oscillator (VCO) to perform RF phase modulation, where the VCO tuning curve is digitally pre-compensated for high linearity and the carrier frequency is calibrated by a dual-mode low-power frequency-locked loop (FLL). A digital intermediate-frequency (IF) pulse-width5 modulator (PWM) drives a complementary power-switch followed by an LC filter to achieve envelope modulation with high efficiency. The proposed transmitter with 9mW power dissipation relaxes the time alignment between the phase and envelope modulations, and achieves an error vector magnitude (EVM) of 4% and phase noise of -123dBc/Hz at 400kHz offset frequency.