• 제목/요약/키워드: frequency and damping

검색결과 1,554건 처리시간 0.033초

MR유체를 이용한 스퀴즈모드형 마운트의 동특성 (Dynamic Properties of Squeeze Type Mount Using MR Fluid)

  • 하종용;안영공;양보석;정석권;김동조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.374-378
    • /
    • 2003
  • This paper presents investigation of damping characteristics of squeeze mode type MR (Magneto-Rheological) mount experimentally. Since damping property of the MR fluid is changed by variation of the applied magnetic field strength, squeeze mode type MR mount proposed in the study has variable damping characteristics according to the applied magnetic field s strength. In the present work, the performance of the mount was experimentally investigated according to the magnetic field strength and exciting frequencies. The experimental results present that the MR mount can effectively reduce the vibration in a wide range of frequency by controlling the applied electromagnetic filed strength. Viscous damping and stiffness coefficients of the MR mount tend to be changed according to the variation of the applied currents in this study and MR effect is reduced by increasing exciting frequency.

  • PDF

MR 유체를 이용한 스퀴즈모드형 마운트의 동특성 (Dynamic Properties of Squeeze Type Mount Using MR Fluid)

  • 안영공
    • 한국소음진동공학회논문집
    • /
    • 제13권6호
    • /
    • pp.490-495
    • /
    • 2003
  • This paper presents investigation of damping characteristics of squeeze mode type MR (magneto-rheological) mount experimentally. Since damping property of the MR fluid is changed by variation of the applied magnetic field strength, squeeze mode type MR mount proposed in the study has variable damping characteristics according to the applied magnetic field strength. In the present work, the performance of the mount was experimentally Investigated according to the magnetic field strength and exciting frequencies. The experimental results present that the MR mount can effectively reduce the vibration in a wide range of frequency by controlling the applied electromagnetic field strength. Viscous damping and stiffness coefficients of the MR mount tend to be changed according to the variation of the applied currents in this study and MR effect is reduced by increasing exciting frequency.

유전알고리즘에 의한 강봉의 감쇠행렬 산출법 (Identification of Damping Matrix for a Steel Bar by the Genetic Algorithm)

  • 박석주;박영범;박경일;제해광;이금주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권2호
    • /
    • pp.271-277
    • /
    • 2011
  • 이 연구에서는 유전알고리즘을 이용하여 강봉의 감쇠행렬을 산출하는 방법을 제안하다. 감쇠행렬이 강성행렬과 비례한다는 가정을 전제로 각 요소강성행렬에 임의의 정수를 곱하여 감쇠행렬을 구성하여 주파수응답함수를 구성하고, 이를 실험 주파수응답함수와 비교한 값을 목적함수로 하여 목적함수가 가장 작은 정수의 감쇠행렬을 구한다. 비감쇠 해석의 경우보다 목적함수의 값이 약 1/60로 작아지는 것을 알 수 있었다. 이를 이용하면 큰 구조물의 감쇠가 큰 일부 부분구조물을 떼어내어 감쇠행렬을 구할 수 있어 구조물의 감쇠진동해석을 하는데 도움이 될 것으로 사료된다.

전통악기 음향판의 양면도장이 음향성에 미치는 영향 (Effects of Double Surfaces Finishing on Acoustical Properties of Soundboard for Traditional Musical Instruments)

  • 정희석;유태경;권주용
    • Journal of the Korean Wood Science and Technology
    • /
    • 제26권4호
    • /
    • pp.26-33
    • /
    • 1998
  • Acoustical properties of chestnut and paulownia woods have been determined in four film thicknesses of oriental lacquering and cashew varnishing on double surfaces of soundboard to elucidate effects of finishing. Accelerometer was attached to the specimen at one third position from one end, and specimen was hit by the impact hammer at one third position from opposite end. Data were processed by vibration analyzer. The ratio of axial-to-transverse sound velocity of untreated specimens of chestnut and paulownia were 3.25 and 5.34, respectively. Natural frequency, specific Young's modulus, acoustical coefficient, sound velocity, damping of sound radiation(DSR) and acoustical converting efficiency(ACE) decreased by oriental lacquering and cashew varnishing for both species. Damping of internal friction of chestnut decreased by oriental lacquering and cashew varnishing, but that of paulownia increased. Natural frequency. specific Young's modulus, acoustical coefficient, sound velocity, and DSR decreased with increased film thickness of both finishing materials. However, damping of internal friction and ACE showed irregular tendency with increased film thickness. Acoustical properties of cashew varnished chestnut specimen were better than those of oriental lacquered specimen. Acoustical properties of oriental lacquered paulownia specimen were better than those of cashew varnished specimen.

  • PDF

흡음재 및 제진재의 최적배치를 이용한 구조-음향 연성계의 소음제어 (Sound Control of Structural-acoustic Coupling System Using Optimum Layout of Absorbing Material and Damping Material)

  • 김동영;홍도관;안찬우
    • 한국소음진동공학회논문집
    • /
    • 제15권2호
    • /
    • pp.161-168
    • /
    • 2005
  • The absorbing material is mostly used to changing the acoustic energy to the heat energy in the passive control, and that consists of the porous media. That controls an air borne noise while the stiffened plates, damping material and additional mass control a structure borne noise. The additional mass can decrease the sound by mass effect and shift of natural frequency, and damping material can decrease the sound by damping effect. The passive acoustic control using these kinds of control materials has an advantage that is possible to control the acoustic in the wide frequency band and the whole space at a price as compared with the active control using the various electronic circuit and actuator. But the space efficiency decreased and the control ability isn't up to the active control. So it is necessary to maximize the control ability in the specific frequency to raise the capacity of passive control minimizing the diminution of space efficiency such an active control. Therefore, the characteristics of control materials and the optimum layout of control materials that attached to the boundary of structure-acoustic coupled cavity were studied using sequential optimization on this study.

Transient soil-structure interaction with consistent description of radiation damping

  • Zulkifli, Ediansjah;Ruge, Peter
    • Structural Engineering and Mechanics
    • /
    • 제33권1호
    • /
    • pp.47-66
    • /
    • 2009
  • Radiation damping due to wave propagation in unbounded domains may cause a significant reduction of structural vibrations when excited near resonance. Here a novel matrix-valued algebraic Pad$\acute{e}$-like stiffness formulation in the frequency-domain and a corresponding state equation in the time domain are elaborated for a soil-structure interaction problem with a layered soil excited in a transient manner by a flexible rotor during startup and shutdown. The contribution of radiation damping caused by a soil-layer upon a rigid bedrock is characterized by the corresponding amount of critical damping as it is used in structural dynamics.

감쇠판이 부착된 원기둥의 동유체력 특성 (Hydrodynamic Forces Characteristics of a Circular Cylinder with a Damping Plate)

  • 조일형
    • 한국해양공학회지
    • /
    • 제25권1호
    • /
    • pp.1-7
    • /
    • 2011
  • The radiation of water waves by a heaving truncated circular cylinder with damping plate is solved in the frame of the three-dimensional linear potential theory. The damping plate has a distinct advantage in reducing the motion response of a floating circular cylinder by increasing the added mass and the damping coefficient. Using the matched eigenfunction expansion method, the characteristics of hydrodynamic added mass and the damping coefficient are investigated with various system parameters, such as the radius and submergence depth of the damping plate. It is found that both added mass and the damping coefficient are significantly increased due to the arranged features of the larger damping plate with shallow submergence, which are positive factors as a motion reduction device of the floating offshore platform. Also the numerical results for an oscillating submerged disk show that the added mass is negative and that the damping coefficient has a peak value at resonant frequency when submergence depth is sufficiently small.

Structural analysis based on multiresolution blind system identification algorithm

  • Too, Gee-Pinn James;Wang, Chih-Chung Kenny;Chao, Rumin
    • Structural Engineering and Mechanics
    • /
    • 제17권6호
    • /
    • pp.819-828
    • /
    • 2004
  • A new process for estimating the natural frequency and the corresponding damping ratio in large structures is discussed. In a practical situation, it is very difficult to analyze large structures precisely because they are too complex to model using the finite element method and too heavy to excite using the exciting force method; in particular, the measured signals are seriously influenced by ambient noise. In order to identify the structural impulse response associated with the information of natural frequency and the corresponding damping ratio in large structures, the analysis process, a so-called "multiresolution blind system identification algorithm" which combines Mallat algorithm and the bicepstrum method. High time-frequency concentration is attained and the phase information is kept. The experimental result has demonstrated that the new analysis process exploiting the natural frequency and the corresponding damping ratio of structural response are useful tools in structural analysis application.

Structural Dynamic System Reconstruction for Modal Parameter Estimation

  • Kim, H. Y.;W. Hwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.150-150
    • /
    • 2000
  • We as modal parameter estimation technique by developing a residual based system reconstruction and using the system matrix coordinate transformation. The modal parameters can be estimated from and residues of the system transfer functions expressed in modal coordinate basis, derived from the state space system matrices. However, for modal parameter estimation of multivariable and order structural systems over broad frequency bands, this non-iterative algorithm gives high accuracy in the natural fre- and damping ratios. From vibration tests on cross-ply and angle-ply composite laminates, the natural frequencies and damping ratios on be estimated using tile coordinates of the structural system reconstructed fro the experimental frequency response. These results are compared with those of finite element analysis and single-degree-of-freedom curve-fitting.

  • PDF

Structural Dynamic System Reconstruction for Model Parameter Estimation

  • Kim, H. Y.;W. Hwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.527-527
    • /
    • 2000
  • Wean modal parameter estiimation technique by developing a residual based system reconstruction and using the system matrix coordinate transformation. The modal parameters can be estimated from and residues of the system transfer functions expressed in modal coordinate basis, derived from the state space system matrices. However, for modal parameter estimation of mllltivariable and order structural systems over broad frequency bands, this non-iterative algorithm gives high accuracy in the natural fre and damping ratios. From vibration tests on cross-ply and angle-ply composite laminates, the natural frequencies and damping ratios can be estimated using the coordinates of the structural system reconstructed from the experimental frequency response. These results are compared with those of finite element analysis and single-degree-of-freedom curve-fitting..

  • PDF