• Title/Summary/Keyword: frequency

Search Result 65,462, Processing Time 0.062 seconds

Improved SDR Frequency Tuning Algorithm for Frequency Hopping Systems

  • Ibrahim, Mostafa;Galal, Islam
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.455-462
    • /
    • 2016
  • Frequency hopping (FH) is a common characteristic of a wide variety of communication systems. On the other hand, software-defined radio (SDR) is an increasingly utilized technology for implementing modern communication systems. The main challenge when trying to realize an SDR FH system is the frequency tuning time, that is, the higher the hopping rate, the lower the required frequency tuning time. In this paper, significant universal hardware driver tuning options (within GNU Radio software) are investigated to discover the tuning option that gives the minimum frequency tuning time. This paper proposes an improved SDR frequency tuning algorithm for the generation of a target signal (with a given target frequency). The proposed algorithm aims to improve the frequency tuning time without any frequency deviation, thus allowing the realization of modern communication systems with higher FH rates. Moreover, it presents the design and implementation of an original GNU Radio Companion block that utilizes the proposed algorithm. The target SDR platform is that of the Universal Software Radio Peripheral USRP-N210 paired with the RFX2400 daughter board. Our results show that the proposed algorithm achieves higher hopping rates of up to 5,000 hops/second.

Comparisons of Estimation Methods of Instantaneous Frequency and Examples of its Application to Beam, Engine Block, and Car Door Vibration (순간 진동수 추정 방법론의 비교와 외팔보, 엔진 블록 및 자동차 문 진동에 의 적용예)

  • 박연규;김양한
    • Journal of KSNVE
    • /
    • v.3 no.4
    • /
    • pp.341-352
    • /
    • 1993
  • Although a frequency analysis by FFT algorithm has been widely used in the vibration community, this approach has somewhat limited features when an analysist want to see the details of frequency trends because FFT shows only energy contents along frequencies. So the concept of instantaneous frequency that represents the dominant frequency component at each time needs to be introduced. In this paper, to get the instantaneous frequency, two methods are used. Methods using Hilbert transform and evolutionary spectrum are those. One of the problems of estimating instantaneous frequency using Hilbert transform is that it is normally very sensitive to signal to noise ratio(SNR) because of the differentiation. Moving window is applied on the estimation of instantaneous frequency, and instantaneous frequency histogram are used to handle this problem and proved to be very effective. Computer simulations for various signals have been done to understand the characteristics of instantaneous frequency. The usefulness of signal analysis using instantaneous frequency was tested by three simple experiments, which were engine experiment, beam experiment, and car door experiment. The instantaneous frequency analysis is found to be a useful technique to analyze the signals that have time varying frequencies.

  • PDF

An Irregular Frequency Reuse Scheme for Cellular OFDMA Systems (셀룰러 OFDMA 시스템을 위한 불규칙적 주파수 재사용 방법)

  • Kim, Young-Serk;Ryu, Chul;Rim, Min-Joong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.81-87
    • /
    • 2007
  • While conventional frequency reuse techniques for cellular communication systems divide frequency resources into multiple regions and each mobile is statically assigned to a certain frequency region, frequency reuse techniques for cellular OFDMA communication systems can be regarded as dynamic scheduling problems of finding best-fitted subcarriers for each packet transmission. Unlike conventional frequency reuse techniques allocating mutually exclusive frequency resources to adjacent cells, this paper proposes the use of a frequency reuse technique with irregular frequency allocation patterns assigned statically based on the cell numbers. This paper shows that the use of irregular frequency patterns can allow efficient interference avoidance and high data throughputs comparable to those with carefully planned frequency patterns.

Performance Analysis of Digital M/W Transmission System adopting Frequency Offset Compensation Algorithm in Multipath Fading Channel (다중경로 페이딩 채널에서 주파수 옵셋 보상 알고리즘을 적용한 디지털 M/W 전송 시스템의 성능 분석)

  • Park, Ki-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.10
    • /
    • pp.63-70
    • /
    • 2013
  • In this paper, we investigated frequency synchronization through computer simulation of digital M/W transmission system in multipath fading channel. we suggested frequency offset correction algorithm against frequency offset between transmitter and receiver, then evaluated the degree of constellation performance enhancement. From the performance evaluation, in case of large frequency offset, although adopting frequency offset correction scheme, residual frequency offset degraded system performance. As a result, according to frequency offset value between transmitter and receiver residual frequency offset affects system performance significantly. The results of this paper should be utilized for frequency synchronization criterion when frequency band of broadcasting system is rearranged.

A Study on Frequency-Modulated Methods for Reducing Acoustic Resonance in HID Lamp (고압방전램프의 음향공명감소를 위한 주파수변조에 관한 연구)

  • Kim, Gi-Jung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.12
    • /
    • pp.622-626
    • /
    • 2001
  • HID(high intensity discharge)lamps are high pressure mercury lamp, high pressure sodium lamp and metalhalide lamp. metalhalide lamp among these lamps has considered to be one of the most effective artificial light sources and this lamp has good efficiency, good color rendition and good focusing capability, But the shortcorning of metalhalide lamp is known as acoustic resonance phenomena in the discharge tube when lighted by electronic ballast and then acoustic resonance cause various problems such as the arc instability, light output fluctuations. In this paper, to reduce the acoustic resonence phenomena, the electronic ballast was designed by three methods for high frequency operation wish frequency-modulated sinusodial waves in acoustic resonance frequency band. These frequency-modulated methods are resonance frequency and resonance frequency, resonance frequency and non-resonance frequency non-resonance frequency and non-resonance frequency Experiment results could't show the Presence of acoustic resonance visually and it proved that the resonance-generating conditions can be avoided by continuously changing the two operating frequencies in acoustic resonance band (20.59kHz∼94.2kHz).

  • PDF

CMOS Integrated Multiple-Stage Frequency Divider with Ring Oscillator for Low Power PLL

  • Ann, Sehyuk;Park, Jusang;Hwang, Inwoo;Kim, Namsoo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.185-189
    • /
    • 2017
  • This paper proposes a low power frequency divider for an integrated CMOS phase-locked loop (PLL). An injection-locked frequency divider (ILFD) was designed, along with a current-mode logic (CML) frequency divider in order to obtain a broadband and high-frequency operation. A ring oscillator was designed to operate at 1.2 GHz, and the ILFD was used to divide the frequency of its input signal by two. The structure of the ILFD is similar to that of the ring oscillator in order to ensure the frequency alignment between the oscillator and the ILFD. The CML frequency divider was used as the second stage of the divider. The proposed frequency divider was applied in a conventional PLL design, using a 0.18 ${\mu}m$ CMOS process. Simulation shows that the proposed divide-by-two ILFD and the divide-by-eight CML frequency dividers operated as expected for an input frequency of 1.2 GHz, with a power consumption of 30 mW.

Relationship Between the Resonance Frequency and QTS for Microspeaker (마이크로스피커에서 공명진동수와 QTS 사이의 연관성)

  • Oh, Sei-Jin
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.403-409
    • /
    • 2011
  • Micro speakers are used to reproduce sound in small electric and information and communications devices, such as cellular phones, PMPs, and MP3 players. The acoustical properties and sound quality, which are changed due to the decreased size of the speaker, are often adjusted varying the type and thickness of the diaphragm. The most widely used diaphragm material is thin polymer. It was previously reported by the author of this paper that the resonance frequency of a micro speaker is changed by the type and thickness of a polymer diaphragm. In this paper, the frequency response near the resonance frequency of a micro speaker was studied as functions of the type and thickness of the polymer diaphragm. While $R_{max}$ and $R_{DC}$ were affected by the type and thickness, an analysis of the electrical impedance curve revealed that $R_o(= R_{max}/R_{DC})$ and ${\Delta}f$ were not changed. Thus, $Q_{TS}$ which was function of $R_o$, ${\Delta}f$, and the resonance frequency, is only related to the resonance frequency. The increase of the resonance frequency led to a proportional rise of $Q_{TS}$. The change of the frequency response near the resonance frequency was not dependent on the type or thickness of the polymer diaphragm, but was affected by the resonance frequency.

A study on the Factors Influencing the Frequency of Closet Cleanup Behavior (옷장 정리 행동 빈도에 영향을 미치는 요인에 관한 연구)

  • Park, Hyun-Hee;Ku, Yang-Suk
    • Fashion & Textile Research Journal
    • /
    • v.21 no.1
    • /
    • pp.36-45
    • /
    • 2019
  • In 2000s, the rapid growth of domestic and foreign fast fashion brands led to an increase in the frequency of shopping for consumers and a significant reduction in the average life span of fashion products. As the kinds and quantity of fashion products owned by individuals increase, the problem of rational clothing management becomes a new concern. The purpose of this study was to investigate the demographic, socio-psychological and purchase behavior factors influencing the frequency of closet cleanup behavior. A total of 278 questionnaires were analyzed. Frequency, exploratory factor analysis, reliability, t-test and regression analysis were used for data analysis using SPSS 22.0. This study results were as follows. First, the frequency of women's closet cleanup behavior was higher than that of men's closet cleanup behavior. Second, the number of brothers and sisters significantly affected the frequency of closet cleanup behavior. Third, the stronger the attachment to fashion products, the higher the frequency of closet cleanup behavior. Fourth, the lower the fashion product retention tendency, the higher the frequency of closet cleanup behavior. Fifth, the higher the frequency of purchasing fashion products, the higher the frequency of closet cleanup behavior. The results of current study provide various implications for educators and marketers who are interested in reasonable management behavior of fashion goods.

Comparison of AT1- and Kalman Filter-Based Ensemble Time Scale Algorithms

  • Lee, Ho Seong;Kwon, Taeg Yong;Lee, Young Kyu;Yang, Sung-hoon;Yu, Dai-Hyuk;Park, Sang Eon;Heo, Myoung-Sun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.3
    • /
    • pp.197-206
    • /
    • 2021
  • We compared two typical ensemble time scale algorithms; AT1 and Kalman filter. Four commercial atomic clocks composed of two hydrogen masers and two cesium atomic clocks provided measurement data to the algorithms. The allocation of relative weights to the clocks is important to generate a stable ensemble time. A 30 day-average-weight model, which was obtained from the average Allan variance of each clock, was applied to the AT1 algorithm. For the reduced Kalman filter (Kred) algorithm, we gave the same weights to the two hydrogen masers. We also compared the frequency stabilities of the outcome from the algorithms when the frequency offsets and/or the frequency drift offsets estimated by the algorithms were corrected or not corrected by the KRISS-made primary frequency standard, KRISS-F1. We found that the Kred algorithm is more effective to generate a stable ensemble time scale in the long-term, and the algorithm also generates much enhanced short-term stability when the frequency offset is used for the calculation of the Allan deviation instead of the phase offset.

Finite element based total response analysis of rectangular liquid containers against different excitations

  • Kalyan Kumar Mandal
    • Ocean Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.57-77
    • /
    • 2023
  • In the present study, the total hydrodynamic pressure exerted by the fluid on walls of rectangular tanks due to horizontal excitations of different frequencies, is investigated by pressure based finite element method. Fluid within the tanks is invisid, compressible and its motion is considered to be irrotational and it is simulated by two dimensional eight-node isoparametric. The walls of the tanks are assumed to be rigid. The total hydrodynamic pressure increases with the increase of exciting frequency and has maximum value when the exciting frequency is equal to the fundamental frequency. However, the hydrodynamic pressure has decreasing trend for the frequency greater than the fundamental frequency. Hydrodynamic pressure at the free surface is independent to the height of fluid. However, the pressure at base and mid height of vertical wall depends on height of fluid. At these two locations, the hydrodynamic pressure decreases with the increase of fluid depth. The depth of undisturbed fluid near the base increases with the increase of depth of fluid when it is excited with fundamental frequency of fluid. The sloshing of fluid with in the tank increases with the increase of exciting frequency and has maximum value when the exciting frequency is equal to the fundamental frequency of liquid. However, this vertical displacement is quite less when the exciting frequency is greater than the fundamental frequency.