Browse > Article
http://dx.doi.org/10.4313/TEEM.2017.18.4.185

CMOS Integrated Multiple-Stage Frequency Divider with Ring Oscillator for Low Power PLL  

Ann, Sehyuk (School of Electrical and Computer Engineering, Chungbuk National University)
Park, Jusang (School of Electrical and Computer Engineering, Chungbuk National University)
Hwang, Inwoo (School of Electrical and Computer Engineering, Chungbuk National University)
Kim, Namsoo (School of Electrical and Computer Engineering, Chungbuk National University)
Publication Information
Transactions on Electrical and Electronic Materials / v.18, no.4, 2017 , pp. 185-189 More about this Journal
Abstract
This paper proposes a low power frequency divider for an integrated CMOS phase-locked loop (PLL). An injection-locked frequency divider (ILFD) was designed, along with a current-mode logic (CML) frequency divider in order to obtain a broadband and high-frequency operation. A ring oscillator was designed to operate at 1.2 GHz, and the ILFD was used to divide the frequency of its input signal by two. The structure of the ILFD is similar to that of the ring oscillator in order to ensure the frequency alignment between the oscillator and the ILFD. The CML frequency divider was used as the second stage of the divider. The proposed frequency divider was applied in a conventional PLL design, using a 0.18 ${\mu}m$ CMOS process. Simulation shows that the proposed divide-by-two ILFD and the divide-by-eight CML frequency dividers operated as expected for an input frequency of 1.2 GHz, with a power consumption of 30 mW.
Keywords
Frequency divider; ILFD; CML; Ring oscillator; CMOS;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. O. Plouchart, J. Kim, V. Karam, R. Trzcinski, and J. Gross, Proc. IEEE Int. Solid State Circuits Conf. (IEEE, San Francisco, CA, 2006), p. 526.
2 Y. Mo, E. Skafidas, R. Evans, and I. Mareels, Proc. ICCSC 2008 (IEEE, Shanghai, China, 2008) p. 812.
3 C. Cao and K. K. O, IEEE Mic. and Wireless Comp. Letters , 15, 721 (2005). [DOI: http://dx.doi.org/10.1109/LMWC.2005.858998]   DOI
4 J. Park, S. Ahn, H. Jeong, and N. Kim, Trans. Electr. Electron. Mater ., 15, 309 (2014). [DOI: http://dx.doi.org/10.4313/TEEM.2014.15.6.309]   DOI
5 H. S. Fazeel, L. Raghavan, C. Srinivasaraman, and M. Jain, Proc. ISVLSI 2009 (IEEE, Tampa, FL, 2009) p. 7.
6 M. K. Ghartemani, S. A. Khajehoddin, P. K. Jain, and A. Bakhshai, IEEE Trans. Inst. and Meas, 61, 930 (2012). [DOI: http://dx.doi.org/10.1109/TIM.2011.2172999]   DOI
7 J. Park, H. Choi, and N. Kim, Analog Integr Circ Sig Process, 83, 143 (2015). [DOI: http://dx.doi.org/10.1007/s10470-015-0517-z]   DOI
8 M. Jalalifar and G. Byun, IEEE Mic. and Wireless Comp. Letters, 24, 881 (2014). [DOI: http://dx.doi.org/10.1109/LMWC.2014.2360355]   DOI
9 A. Buonomo, A. Schiavo, M. Awan, M. Asghar, and M. Kenndy, IEEE Trans. circuit and systems-1, 60, 3126 (2013). [DOI: http://dx.doi.org/10.1109/TCSI.2013.2265977]   DOI
10 H. Kim, S. Ann, and N. Kim, IEEE J. Sensors, 16, 6687 (2016). [DOI: http://dx.doi.org/10.1109/JSEN.2016.2585820]
11 K. Woo, Y. Liu, E. Nam, and D. Ham, IEEE J. of Solid-State Circuits, 43, 379 (2008). [DOI: http://dx.doi.org/10.1109/JSSC.2007.914281]   DOI
12 Y. Choi, H. Choi, and T. Kwon, Proc. KORUS 2005 (IEEE, Novosibirsk, Russia, 2005) p. 826.
13 A. Bashir, J. Li, K. Ivatury, N. Khan, N. Gala, N. Familia, and Z. Mohammed, Proc. 2009 CICC (IEEE, San Jose, CA, 2009) p. 319.