• Title/Summary/Keyword: freezing preservation

Search Result 121, Processing Time 0.03 seconds

Comparison of Vitrification and Slow Freezing for the Cryopreservation of Chicken Primordial Germ Cell (Ogye) (한국재래닭 (오계) 원시생식세포의 완만동결과 급속동결의 비교)

  • Kim, Sung Woo;Ko, Yeoung-Gyu;Byun, Mijeong;Do, Yoon Jung;Han, Jae Yong;Kim, Dong Hun;Seong, Hwan-Hoo;Kim, Hyun
    • Journal of Animal Science and Technology
    • /
    • v.55 no.5
    • /
    • pp.417-425
    • /
    • 2013
  • We sought to provide a method for freezing and preserving primordial germ cells, or an avian germ cell of a bird, as a material for developmental engineering or species preservation. The aim of this study was to compare the efficacy of slow freezing with a vitrification method for the cryopreservation of chicken primordial germ cells (PGCs). PGCs obtained from the germinal gonad of day 5.5-6 day (stage 28) cultured chick embryos, using the MACS method, were classified into two groups: slow freezing and vitrification. We examined the viability of PGCs after Cryopreservation. Four freezing methods were compared with each other, including the following: Method 1: The PGCs were frozen by a programmed freezer in a plastic straw, including 2.0 M ethylene glycol (EG) as cryoprotective additive (slow freezing) Method 2: The PGCs were vitrified in a plastic straw, including 8.0 M EG, plus 7% polyvinylpyrrolidone (PVP) (rapid freezing). Method 3: The slow freezing was induced with a cryotube including 2.0 M EG Method 4: The PGCs were frozen in a cryotube including 10% dimethyl suloxide (DMSO) (rapid freezing). After freezing and thawing, survival rates of the frozen-thawed PGCs from Method 1 to 4were 76.4%, 70.6%, 80.5% and 78.1% (p<0.05), respectively. The slow freezing ($-80^{\circ}C$ programmed freezer) method may provide better survival rates of frozen-thawed PGCs than the vitrification method for the cryopreservation of PGCs. Therefore, these systems may contribute to the cryopreservation of a rare avian species.

Storage of Bull and Boar Semen: Novel Concepts Derived Using Magnetized Water and Antioxidants

  • Lee, Sang-Hee;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Artificial insemination technique has been contributed immensely for production of livestock worldwide as a critical assisted reproductive technique to preserve and propagate excellent genes in domestic animal industry. In the past decade, methods for semen preservation have been improved mostly in liquid preservation method for boar semen and freezing method for bull semen. Among many factors affecting semen quality during preservation, reactive oxygen species, produced by aerobic respiration in sperm for survival and motility, are unfavorable to sperm physiology. In mammalian cell as well as in the sperm, antioxidant system plays a role in degradation of reactive oxygen species. Magnetized water forms smaller stabilizing water clusters, resulting in high absorption and permeability of the cell for water, implicating its application for semen preservation. Therefore, this review focuses on preservation methods of boar and bull semen with respect to improvement of extender and reduction of reactive oxygen species by using magnetized water and supplementation of antioxidants.

Current Application of Embryo Cryopreservation for Farm Animals (가축 수정란 동결보존의 최근 이용방법)

  • 석호봉
    • Journal of Embryo Transfer
    • /
    • v.4 no.1
    • /
    • pp.1-13
    • /
    • 1989
  • This paper reviews the most important steps that have generated consistent progress in principles and developmental progress of embryo cryopreservation, and also study on freezing procedure and its application by conventional method and current improved method for freezing procedure and its appilcation of embryo cryopreservation in farm animals. Four were of particular interest: 1.The transport of water across the ccli membrane (zona pellucida) during freezing and thawing accordinglyplays a role in determing whether the celi survives. This movement of water is controlied mainly by extracellular phase changes and by the nature and concentration of any cryoprotective agent present. Therates of cooling, freezing and warming, and the intervals over which they are applied are further decisi've factors in determining whether a cryopreservation procedure allows survival after thawing. 2.The first successful deep freezing experiments with sheep morula and blastocysts during the seventies were based on the early procedures used for mouse embryos.Current research during the eighties is developed with the aim of simplifying and improving current procedures such as one-step dilution and rapid or ultra-rapid cooling by using the model of laboratory animals. 3.The conventional method for the embryo cryopreservation is described. An alternative to this method which may result in high survival and also in reducing of the freezing and thawing time is done by combing a permeable cryoprotectant such as glycerol, DMSO or propanediol and a non-permeable compound such as sucrose, trehalose, raffinose or lactose. 4.Finally a different approach to the preservation of embryos, named vitrification, is introduced. This procedure depends upon the ability of concentrated solutions of cryoprotective agents such as glycerol and propanediol to supercool to very low temperature (-196$^{\circ}C$) during rapid cooling before solidifying without formation of ice. However, more complete data are necessary for successful vitrification of blastocysts.

  • PDF

Antibrowning Effects of Electrolyzed Oxidizing Water with/without Freezing Point Depressing Agents on Peeled Chestnut during Storage (빙점강하제 첨가 전해산화수에 의한 깐밤의 저장 중 갈변억제 효과)

  • 정진웅;이선민;김은미;김종훈;김명호
    • Food Science and Preservation
    • /
    • v.8 no.4
    • /
    • pp.385-392
    • /
    • 2001
  • This study was to investigate the inhibiting effect of electrolyzed oxidizing (EO) water with/without freezing point depressing agents on polyphenol oxidase (PPO) activity of peeled chestnut. 0.85% sodium chloride, 0.5% citron and 0.5% lemon juice were used to freezing point depressing agents. The content of total phenolics was 13.36 mg% at the earlier stage of storage, and then suddenly increased at around 8∼1ldays. At the 11th day, PPO activity of untreated chestnut was 1,152 units, that was higher than any ethers. EO water adding lemon and citron juice showed synergistic effects on the enzyme inhibition, and their PPD activities were 143.3 and 180.22 units after 4 weeks, respectively. Sensory analysis showed that acceptance of peeled chestnuts was dependent on color and taste, which was related to PPO activity and sweetness. The peeled chestnut treated with EO water added citron or lemon juice tended to show the highest score fur acceptance.

  • PDF

Effect of Freezing on the Physicochemical Properties of Semi-dried Red Pepper (냉동조건에 따른 반건조 홍고추의 물리.화학적 특성 변화)

  • Kim, Bo-Yeon;Lee, Kyoung-Hae
    • Food Science and Preservation
    • /
    • v.16 no.3
    • /
    • pp.362-370
    • /
    • 2009
  • Quality changes in semi-dried red pepper (SRP) treated with ozone water were observed upon storage (at $-18^{\circ}C$) after freezing at $-10^{\circ}C$, $-20^{\circ}C$, and $-40^{\circ}C$. Drip loss after treatment was greater than in control peppers, but no significant difference was evident between treatments (p<0.05). We observed that differences between samples decreased as storage time increased. Texture after treatment did not change significantly over a 3-month period. The redness (a-value) after treatment was greater than in the control, but no sample showed significant color alteration after the 3-month period. The capsaicinoid content decreasedas storage time increased, and was also affected by the freezing temperature. However, carotenoid content was not influenced by freezing or storage temperature. Ascorbic acid and free sugar contents showed decreases of 47% and 6.5%, respectively, after semi-drying. The results of sensory evaluation indicated no significant difference between samples in terms of color appearance.

Changes in Quality of Soft Persimmon during Freezing and Defrosting (동결 및 해동중의 연시의 품질변화)

  • 성전중;노영균;박석희;변효숙;함영진;최종욱
    • Food Science and Preservation
    • /
    • v.6 no.4
    • /
    • pp.398-401
    • /
    • 1999
  • This study was conducted to investigate the changes in qualities of soft persimmon by freezing and defrosting. Testing varieties were Sangjudungsi and Chunsdobansi that were cultivated on Sangju and Chungdo regions, chief cultivation of astringent persimmon in Kyongbuk province. Dropping time to 40 degrees below zero of the flesh was 10∼20 minutes longer in Chungdobansi than that in Sangiudungsi. Freezing temperature of astringent persimmon was 2∼3 degrees below zero. Occurence rates of cracked fruit during freezing storage were 24.5% in Sangjudungsi and 15.5% in Chungdobansi. Defrosting of Sangjudungsi and Chungdobansi took 150 minutes and 120 minutes at 5$^{\circ}C$, respectively. L values of chromaticity were some lower after defrosting than that of frozen soft persimmon, and a and b values decreased during defrosting rapidly. Soluble solid contents of frozen soft persimmon almost didn't change during freezing, that is, harvesting, softening, frosting and defrosting steps. Defrosting completion time to core part took 4 hours and 30 minutes in Sangjudungsi and 4 hours and 20 minutes in Chungdobansi at ordinary temperature (10.9∼14.8$^{\circ}C$).

  • PDF

Quality Effects of Various Pretreatment Methods on the Properties of Peeled Chestnut during Storage (깐밤의 전처리 방법이 저장 중 품질에 미치는 영향)

  • Kim, Jong-Hoon;Jeong, Jin-Woung;Kweon, Ki-Hyun
    • Food Science and Preservation
    • /
    • v.14 no.5
    • /
    • pp.462-468
    • /
    • 2007
  • In this study, the quality effect of soaking in alum water, soaking in electrolyzed oxidizing water, and freezing during storage, on peeled chestnuts, were analyzed. When soaked in 0.1% (w/v) alum water, peeled chestnuts showed good characteristics in terms of weight loss, decomposition, and color preservation. However, texture and taste qualities rapidly decreased with increases in storage time. When soaked in twice their own weight of electrolyzed oxidizing water(pH 2.61, ORP 1,142 mV) for 10 min, the samples were preserved in an optimally edible condition. When frozen at $-10^{\circ}C$ for 5 min, the samples were suitable for use as material for processed chestnut produce, as was also the case when pretreatment with electrolyzed oxidizing water was employed.

Changes in quality characteristics of sliced garlic with different freezing conditions during storage (냉동조건에 따른 편마늘의 냉동저장 중 품질변화)

  • Kim, Seok-Young;Kim, Hee-Sun;Kim, Jin-Se;Han, Gwi-Jung
    • Food Science and Preservation
    • /
    • v.24 no.6
    • /
    • pp.746-757
    • /
    • 2017
  • This study was performed to evaluate the effect of different freezing conditions and storage periods on physicochemical and microbial characteristics of garlic. Garlics were washed, dried, sliced to 0.3 cm then packed in LDPE+LLDPE film bags. They were treated with still-air freezing at $-20^{\circ}C$ (SAF20), $-40^{\circ}C$ (SAF40) and immersed-liquid freezing at $-40^{\circ}C$ (ILF40). Frozen garlics were stored under frozen storage conditions for 7 months at $-20^{\circ}C$ and quality characteristics were measured monthly during the frozen storage. Freezing rate of garlic was the fastest in ILF 40 (10 min), SAF40 (40 min) and SAF20 (1,600 min) sequentially. In ILF40, drip loss, cutting force, total aerobic bacteria count and pH were the lowest, whereas pyruvic acid and allicin content were the highest (p<0.05) during frozen storage, these results were the most similar characteristics with the fresh garlic. During frozen storage, drip loss, color difference and total organic acid content were significantly fluctuated in SAF20 (p<0.05), while they were not changed in ILF40. Overall, total aerobic bacteria count and pH decreased, cutting force, pyruvic acid and allicin content remained unchanged in all groups. In conclusion, the optimal freezing conditions for garlic with the least quality changes was considered to be ILF40 (immersed liquid freezing), keeping quality characteristics up to 7 months by freezing storage.

Formation and Dissociation Processes of Gas Hydrate Composed of Methane and Carbon Dioxide below Freezing

  • Hachikubo, Akihiro;Yamada, Koutarou;Miura, Taku;Hyakutake, Kinji;Abe, Kiyoshi;Shoji, Hitoshi
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.515-521
    • /
    • 2004
  • The processes of formation and dissociation of gas hydrates were investigated by monitoring pressure and temperature variations in a pressure cell in order to understand the kinetic behavior of gas hydrate and the controlling factors fur the phase transition of gas hydrate below freezing. Gas hydrates were made kom guest gases ($CH_4,\;CO_2$, and their mixed-gas) and fine ice powder. We found that formation and dissociation speeds of gas hydrates were not controlled by temperature and pressure conditions alone. The results of this study suggested that pressure levels at the formation of mixed-gas hydrate determine the transient equilibrium pressure itself.

Effects of freezing temperature on the physiological activities of garlic extracts (냉동 온도에 따른 마늘 추출물의 생리활성 변화)

  • Park, Jong Woo;Kim, Jinse;Park, Seok Ho;Choi, Dong Soo;Choi, Seung Ryul;Oh, Sungsik;Kim, Yong Hoon;Yoo, Seon Mi;Han, Gui Jeung
    • Food Science and Preservation
    • /
    • v.22 no.4
    • /
    • pp.520-527
    • /
    • 2015
  • This study investigated the physiological activities of garlic extracts frozen at -20, -80, and $-196^{\circ}C$. To determine the optimum freezing temperature for maintaining garlic's physiological activity, antioxidant and antibacterial activities were investigated. The antioxidant activities were determined by DPPH radical scavenging ability, SOD-like activity, nitrite-scavenging ability, and reducing power. Total phenolic compounds and flavonoids of garlic extract frozen at $4^{\circ}C$ (control) were measured as $6.91{\pm}0.69{\mu}gGAE/g$ and $0.315{\pm}0.017{\mu}gQE/g$, respectively. Although the content of total phenolic compounds was not affected by the different freezing temperatures, the flavonoids contents of garlic extract frozen at $-20^{\circ}C$ were slightly decreased. The DPPH radical scavenging ability of garlic extracts (2 mg/mL) frozen at $-80^{\circ}C$ was 61%, whereas those frozen at $-20^{\circ}C$ and $-196^{\circ}C$ were 51%. SOD-like activity was slightly increased by freezing. However, the nitrite scavenging ability (18% at pH 3.0) and reducing power (OD700=1.6) were not affected by freezing temperatures. Antimicrobial activities did not show significant differences depending on freezing temperatures. Taken together, the physiological activities of the frozen garlic extracts were not significantly changed by the freezing temperatures; however, the antioxidant and antibacterial effects of the phenolic compounds and flavonoids were maintained at $-80^{\circ}C$. These results suggest that $-80^{\circ}C$ frozen garlic could maintain a higher quality than the conventional freezing method ($-20^{\circ}C$) without loss of physiological activities during the storage.