• Title/Summary/Keyword: freezing air temperature

Search Result 159, Processing Time 0.029 seconds

Studies on the Development of Easy Cryopreservation Technique of Bovine Embryos II. Effects of Equilibration of Cryoprotectants, Temperature and Time of Thawing and 1 Step Straw Method on In Vitro Developmental Rates of Embryos (소 수정란의 간이 동결기법 개발에 관한 연구 II. 내동제의 평형시간, 융해온도, 융해시간 및 1단계 Straw법이 체외발생에 미치는 영향)

  • 김상근;남윤이;현병화
    • Korean Journal of Animal Reproduction
    • /
    • v.21 no.2
    • /
    • pp.103-109
    • /
    • 1997
  • The studies on the carried out to investigate to determine the optimum thawing temperature and equilibration time and 1 step straw method of frozen bovine embryos. The follicular oocytes were cultured in TCM-199 medium containing 10 IU/ml PMSG(Sigma, USA), 10 IU/ml hCG(Sigma, USA), 1 $\mu\textrm{g}$/ml $\beta$-estradiol(Sigma, USA) and 10% FCS for 24~48 hrs in incubator with 5% CO2 in air at 38.5$^{\circ}C$ and then matured oocytes were again cultured for 12~18 hrs with motile capacitated sperm by preincubation of heparin. The bovine embryos following dehydration by cryoprotective agents and various concentration of sucrose were directly plunged into liquid nitrogen and thawed in 3$0^{\circ}C$ water. Survival and in vitro developmental rate was defined as developmental rate on in vitro culture or FDA-test. The results are summarized as followes : 1. The equilibration time on in vitro developmental rates of bovine embryos was attained after short period of time(2.5~5 min.) in the freezing medium higher than long period of time (10~20 min.). 2. The temperature thawed at 3$0^{\circ}C$ after rapid freezing of bovine embryos resulted in a significantly higher in vitro developmental rate than did at 2$0^{\circ}C$ and 35$^{\circ}C$. 3. The thawing time on in vitro developmental rates of bovine embryos was attained after short period of time(1~5 min.) in the freezing mediuim higher than long period of time(10min.). 4. The in vitro developmental rates of bovine embryos after rapid frozen-thawing by 1 step straw method in the freezing medium added 1.5M, 2.0M glycerol, DMSO, propanediol and 0.25M, 0.50M, 0.75M, 1.00M sucrose were 12.5~19.4%, 10.0~15.6%, 9.1~13.8% and 6.7~12.9%, respectively.

  • PDF

Effect of Freezing Temperature on the Rehydration Properties of Freeze-Dried Rice Porridge (동결건조 쌀죽의 재수화 특성에 미치는 동결온도의 영향)

  • Koh, So-mi;Rhim, Jong-Whan;Kim, Jeong-Mok
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.509-512
    • /
    • 2011
  • To study the effect of freezing rate on the quality of freeze-dried rice porridge, freeze-dried rice porridge products were prepared with rice porridge pre-frozen at three different temperatures of -20, -40, and -70$^{\circ}C$. The porridge properties such as microstructure, mechanical properties, textural properties, and rehydration rate were determined. Scanning electron microscopy images indicated that fewer air cells were obtained with a larger size of freeze-dried rice porridge frozen at -20$^{\circ}C$ compared with that frozen at -40 and -70$^{\circ}C$. In contrast, quick frozen products at -70$^{\circ}C$ had more dense texture with higher mechanical strength, whereas slow frozen products exhibited higher rehydration rates than those of quick frozen products. In conclusion, the proper choice of pre-freezing temperature plays a decisive role when preparing freeze-dried rice porridge with optimum quality and convenience.

An Experimental Study on Freezing Behavior of NaCl and Heavy Metal Aqueous Solution Using Freeze Concentration Method (동결농축법을 이용한 염수 및 중금속 수용액의 동결거동에 관한 실험 연구)

  • Kim, Jung-Sik;Lim, Seung-Taek;Oh, Cheol
    • Journal of Navigation and Port Research
    • /
    • v.37 no.2
    • /
    • pp.129-135
    • /
    • 2013
  • Recently, waste water treatment system is developed in small and middle size to get more economic advantage. Freeze concentration system has high thermodynamic efficiency and low energy consumption, can re-use purified water and cold energy obtained from ice. This study was experimentally performed to investigate pollution containment in frozen layer by cooling wall temperature, air-bubble flow methods, initial ice-lining thickness of frozen layer in NaCl aqueous solution and the representative heavy metals, Pb and Cr aqueous solution. As the result, a decrease in the cooling wall temperature bring a higher growth rate of ice front and the more solute was involved in frozen layer. The method to inject directly air-bubble into ice-liquid interface through ring shape nozzle gave high purity of ice compared to indirect method. Ice lining in 5mm thickness resulted in frozen layer with higher purity than 1mm thickness.

The Frost Heaving Characteristics of Subgrade Soils Using Laboratory Freezing System (실내동결시스템을 이용한 노상토의 동상 특성)

  • Shin, Eun-Chul;Ryu, Byung-Hyun;Park, Jeong-Jun
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.71-79
    • /
    • 2010
  • The influence of fines of the frost susceptibility of subgrade soils were established by laboratory freezing system test simulating closely the thermal conditions in the field. During the winter season, the climate is heavily influenced by the cold and dry continental high pressure. Because of siberian air mass, the temperature of January is $-6{\sim}-7^{\circ}C$ on average. This chilly weather generate the frost heaving by freezing the moisture of soil and damage potential of the road structure. In the freezing soil, the ice lenses increase the freeze portion of soil by absorbing the ground water with capillary action. However, the capillary characteristics differ from the sort of soil on the state of freezing condition. In the current design codes for anti-freezing layer, the thickness of anti freezing layer is calculated by freezing depth against the temperature condition. Therefore, they have a tendency of over-design and uniform thickness without the considerations of thermal stability, bearing capacity and frost susceptibility of materials. So, it is essential for studying the appropriateness and bearing capacity besides the seasonal and mechanical properties of pavement materials to take a appropriate and reasonable design of the road structure. In this Paper, the evaluation of frost susceptibility was conducted by means of the mechanical property test and laboratory freezing system apparatus. The temperature, heaving amount, heaving pressure and unfrozen water contents of soil samples, the subgrade soils of highway construction site, were measured to determine the frost susceptibility.

Nocturnal temperature distribution on orange orchards in Cheju Island (II) (제주도 감귤 과수원의 야간 기온 분포(II))

  • ;;Lee, Seung-Ho;Lee, Hyong-Young
    • Journal of the Korean Geographical Society
    • /
    • v.30 no.3
    • /
    • pp.230-241
    • /
    • 1995
  • The Characteristics of nocturnal temperature fields were analyzed to understand the factors of freezing-and-cold damages on orange orchards in Cheju Island. Temperatures were measured from January 7th through 27, 1995 at 25 sites in an area of 1x1.25$ extrm{km}^2$, Wasan-ri, Chochon-up, Pukcheju-kun located on the northeastern slope of Mt.Hanla. Several other weather elements such as wind and cloud were observed as supplementary data. Surface weather maps were also analyzed to clarify the influence of prevailing pressure patterns on the temperature fields. The vertical temperature profiles were obtained at the height from the ground up to 360 cm in 30 cm intervals at site 3, a frost hollow, and site 10 on the upper slope. The results show that freezing damages occured in the hollows, terrain depressions, rather than at the upper slope due to nocturnal radiation cooling as well as accumulation of cold airflow from Mt.Hanla. Windbreaks of densely planted Japanese ceders with stone-walls also roled as obstacles to the cold airflow in nights with Clear skies and light winds. The maximum intensity of temperature inversion in hollows, quasi-cold air lake, was 3.1$^{\circ}C$. Cold air from Mt.Hanla was trapped in the depressions up to a height of 90cm forming frost pocket. Man-made facilities such as shelterbelt or stone-wall which are built to prevent the penetration of cold north-westeries in winter aggravated the cold damage. The differance of daily minimum temperatures between before and behind shelterbelts was 2.$0^{\circ}C$. The man-made convection by smudgin which raised the temperatures up to 3.8$^{\circ}C$ can reduce the cold damage in the hellows.

  • PDF

A Study on Snow Melting System for the Anti-freezing Testing Road (시험선로 결빙방지를 위한 융설시스템에 관한 연구)

  • Han, K.I.;Lee, A.H.;Cho, D.H.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.34-40
    • /
    • 2006
  • The snow melting system by electric heating wires which is adopted in this study is a part of road facilities to keep surface temperature of the road higher than freezing point of water for melting the snow accumulated on it. The system is designed to increase traffic safety and capacity. The electric heating wires are buried under paved road at a certain depth and operated automatically and manually. Design theory, amount of heating, and installation standard vary according to economic situation, weather condition, and installation place where the system applies. It is tried to figure out that the appropriate range of required heat capacity and installation depth and intervals for solving snowdrifts and freezing problems with the minimum electric power consumption. The most important factors to design the system are calculation of heating capacity depending on weather condition and depth and interval of the electric heating wires depending on air condition respectively. The study were performed under the range of the air temperatures($-2^{\circ}C,\;-5^{\circ}C,\;-8^{\circ}C$), the intervals of the electric heating wires(70mm, 100mm, 125mm), and the installation depths(50mm, 70mm, 100mm). The ready made commercial program package was used to verify the experimental results.

  • PDF

Numerical Analysis for Stefan Problem in Mold-Casting with Air-Gap Resistance (주형/주물 접촉면에서의 접촉열저항을 고려한 상변화문제에 관한 연구)

  • 여문수;손병진;이관수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.348-355
    • /
    • 1992
  • Casting structures and properties are determined by the solidification speed in the metal mold. The heat transfer characteristics of the interface between the mold and the casting is one of the major factors that control the solidification speed. According to Sully's research, the thermal resistance exists due to the air-gap formation at the mold-casting interface during the freezing process and the interface heat transfer coefficient is used to describe the degree of it. In this study, one-dimensional Stefan problem with air-gap resistance in the cylindrical geometry is considered and heat transfer characteristics is numerically examined. The temperature distribution and solidification speed are obtained by using the modified variable time step method. And the effects of the major parameters such as mold geometry, thermal conductivity, heat transfer coefficient and initial temperature of casting on the thermal characteristics are investigated.

Numerical Investigation on Freezing in Ballast Tank of Ship Navigating in Ice-bound Sea

  • Kang, Ho-Keun;Kim, Ki-Pyoung;Ahn, Soo-Whan
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.95-102
    • /
    • 2013
  • For vessels operating in the cold climate regions, the ballast water inside or hopper tanks above the waterline may be frozen, starting at the top of the tank and at the side walls. Therefore, countermeasures against freeze-up of the ballast tank such as air-bubbling system, hot steam injecting system, heating coil system and water circulating system are taken to prevent freeze-up phenomenon; however, there are no rigorous investigations of anti-freezing to examine the effectiveness and validity of systems against freeze-up of the ballast tank, in which the temperatures are about $-25^{\circ}C$ (ambient air temperature) and $0^{\circ}C$ (sea water), respectively. In this paper, to ensure reasonable specifications for cold regions if the measures from the above-mentioned systems against freeze-up are effective, the phenomenon of ballast tank freeze-up is simulated and discussed in low temperature conditions. With the results using the commercial CFD code, CFX 14, the most cost-effective solution is conducted to prevent being frozen along the outer surface.

Numerical Analysis on Freezing in the Ship Voyaging in Polar Regions

  • Kang, Ho-Keun;Kim, Ki-Pyoung;Ahn, Soo-Whan
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.30-37
    • /
    • 2013
  • For vessels operating in the cold climate regions, the ballast water inside or hopper tanks above the waterline may be frozen, starting at the top of the tank and at the side walls. Therefore, countermeasures against freeze-up of the ballast tank such as air-bubbling system, hot steam injecting system, heating coil system and water circulating system are taken to prevent freeze-up phenomenon; however, there are no rigorous investigations of anti-freezing to examine the effectiveness and validity of systems against freeze-up of the ballast tank, in which the temperatures are about -$25^{\circ}C$ (ambient air temperature) and $0^{\circ}C$ (sea water), respectively. In this paper, to ensure reasonable specifications for cold regions if the measures from the above-mentioned systems against freeze-up are effective, the phenomenon of ballast tank freeze-up is simulated and discussed in low temperature conditions. With the results using the commercial CFD code, CFX 14, the most cost-effective solution is conducted to prevent being frozen along the outer surface.

Physicochemical Properties of Pork Neck and Chicken Leg Meat under Various Freezing Temperatures in a Deep Freezer

  • Kim, Eun Jeong;Lee, SangYoon;Park, Dong Hyeon;Kim, Honggyun;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.40 no.3
    • /
    • pp.444-460
    • /
    • 2020
  • This study was conducted to investigate the effects of freezing and storage temperature (-18℃, -50℃, and -60℃) on the physicochemical properties of pork neck and chicken leg meat in home-scale deep freezers. Pork neck was cut into a thickness of 3 cm (9×9×3 cm, 150 g), individually packed in air-containing packages, and stored at different temperature (-18℃, -50℃, and -60℃) for 6 months. Chicken leg meats were prepared (10 cm long, weighing 70 g) and packed in the same manner. Frozen samples were thawed at 2℃. Physicochemical properties such as thawing loss, cooking loss, water-holding capacity, color, volatile basic nitrogen (VBN), and thiobarbituric acid reactive substances (TBARS) were evaluated. The samples frozen by deep freezing (-60℃) was favorable with respect to thawing loss, color, and VBN. Samples frozen at -60℃ had lower values of thawing loss and VBN than those frozen at -18℃ for all storage periods (p<0.05). Color parameters were more similar to those of fresh meat than to those of samples frozen at -18℃ for 6 months. The TBARS of all samples were below 0.3 mg malondialdehyde/kg, thereby indicating oxidative stability of lipids. Consequently, deep freezing at -60℃ may be acceptable for maintaining the quality of fresh pork neck and chicken leg meat for 6 months without deterioration.