• 제목/요약/키워드: freeze and thaw durability

검색결과 155건 처리시간 0.021초

Temperature and humidity effects on behavior of grouts

  • Farzampour, Alireza
    • Advances in concrete construction
    • /
    • 제5권6호
    • /
    • pp.659-669
    • /
    • 2017
  • Grouts compared to other material sources, could be highly sensitive to cold weather conditions, especially when the compressive strength is the matter of concern. Grout as one the substantial residential building material used in retaining walls, rebar fixation, sidewalks is in need of deeper investigation, especially in extreme weather condition. In this article, compressive strength development of four different commercial grouts at three temperatures and two humidity rates are evaluated. This experiment is aimed to assess the grout strength development over time and overall compressive strength when the material is cast at low temperatures. Results represent that reducing the curing temperature about 15 degrees could result in 20% reduction in ultimate strength; however, decreasing the humidity percentage by 50% could lead to 10% reduction in ultimate strength. The maturity test results represented the effect of various temperatures and humidity rates on maturity of the grouts. Additionally, the freeze-thaw cycle's effect on the grouts is conducted to investigate the durability factor. The results show that the lower temperatures could be significantly influential on the behavior of grouts compared to lower humidity rates. It is indicated that the maturity test could not be valid and precise in harsh temperature conditions.

플라이애쉬를 이용한 강섬유보강 콘크리트의 내구성에 관한 실험적 연구 (An Experimental Study on the Durability of SFRC Using Fly Ash)

  • 박승범;오광진;이택우;권혁준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.339-344
    • /
    • 1997
  • During recent years the durability of concrete structures has attracted considerable interest in concrete practice, material research and long-term deformation. To preserve the brittleness of concrete as well as energy absorption and impact resistance, amount of fiber usage has greatly increased year to year in the field of public works. When fly ash, fine powder, mixed into concrete, it condensed the void of concrete structure. Expecially, there's a great effect for strength improvement of concrete by initial pozzolanic reactions. Pozzolan reaction, between cement particle and fly ash, can elaborate the micro structure of matrix. So it was able to improve the effect of fiber reinforced by increased adhesion between cement paste and steel fiber. And so, in this paper, we dealt SFRC for the purpose of efficiently using of industrial by-products and its economical manufacturing. Also we performed the test for durability such as chemical resistance, freeze-thaw resistance and accelerated carbonation of SFRC using fly ash.

  • PDF

합성섬유보강 콘크리트의 내구특성 (Durability of Concrete Reinforced by Polypropylene Fivers)

  • 박제선;정영화;윤경구;이주형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.449-454
    • /
    • 1999
  • Pavement concrete subjected to severe environmental condition may be vulnerable to frost attack practically where de-icing chemicals are used. This study focused on the investigation of durability characteristics of pavement concrete incorporation polypropylene fibers and application feasibility of these into the pavements of local roads and highway. A series of labortory tests were performed with main experimental variable such as fiber types, fiber contents. and type of concrete mix. The test of compressive strength was executed as primary tests, before the durability tests such as a scaling resistance were performed. De-icing salt resistance test was progressed by recycling freeze and thaw in the presence of a 4% calcium chloride solution. The deteriorated surfaces were rated by visual inspection and the loss weight were measured at every 5 cycles.

  • PDF

실리카흄을 혼입한 강섬유보강 콘크리트의 내구성에 관한 실험적연구 (An Experimental Studyon the Durability of Steel Field Reinforced Concrete Using Silica Fume)

  • 박승범;홍석주;조청휘;김부일
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.285-291
    • /
    • 1998
  • During recent years, the durability of concrete structures has been considered in concret practice and material research. To preserve the brittleness of concrete as well as energy absorption and impact resistance, amount of fiber usage has greatly increased in the field of public works. Ultra fine powder, silica fume, mixed into concrete, it reduce void of concrete structure. Especially, there's a great effect for strength improvement of concrete by initial pozzolanic reactions. For these reasons, if silica fume mixed into concrete, it decrease the total void by microfilter effect . Pozzolan reaction, between cement particle and silica powder, can elaborate the micro structure of matrix. And so, in this paper, we deal SFRC for the purpose of efficiently using of industrial by-products(silica fume). Also we performed the test for durability such as freeze-thaw resistance and accelerated carbonation of SFRC using silica fume.

  • PDF

재생골재 콘크리트의 내구특성에 관한 실험적 연구 (An Experimental Study on the Durability of Recycled Aggregate Concrete)

  • 서치호;김병윤
    • 콘크리트학회논문집
    • /
    • 제17권3호
    • /
    • pp.385-392
    • /
    • 2005
  • 본 연구는 재생골재 콘크리트의 적극적인 활용을 위하여 재생굵은골재를 대체율에 따라 혼합골재로 하는 재생골재 콘크리트의 동결응해 저항성, 탄산화 저항성 및 건조수축에 대한 시험을 실시하여 내구특성의 영향요인을 분석하고 내구성 증진방안을 강구함으로써 재생골재 콘크리트의 품질과 신뢰성을 확보하는데 그 목적이 있다. 연구결과는 다음과 같다. (1) 재생굵은골재를 혼합골재로 하는 재생골재 콘크리트의 동결융해 저항성은 모든 대체율에서 $90\%$를 상회하는 상대동탄성계수로 나타나 우수한 결과를 보였으며, 전 사이클에서는 $99.2{\~}91.0\%$의 상대동탄성계수의 범위를 보여 쇄석을 사용한 보통 콘크리트의 상대 동탄성계 수 범위인 $97.5{\~}90.6\%$에 비해 향상된 내동해성으로 나타났다. (2) 재생골재 콘크리트의 촉진탄산화 깊이는 대체율이 증가함에 따라 대체하지 않은 보통 콘크리트와 유사하거나 다소 감소하는 경향으로 나타났다. (3) 재생굵은골재를 혼합골재로 하는 재생골재 콘크리트의 건조수축에 의한 길이변화율은 전 배합에서 쇄석을 사용한 보통 콘크리트보다 $18.5{\~}3.9\%$ 작게 나타났다.

Durability properties of fly ash-based geopolymer mortars with different quarry waste fillers

  • Tammam, Yosra;Uysal, Mucteba;Canpolat, Orhan
    • Computers and Concrete
    • /
    • 제29권 5호
    • /
    • pp.335-346
    • /
    • 2022
  • Geopolymers are an important alternative material supporting recycling, sustainability, and waste management. Durability properties are among the most critical parameters to be investigated; in this study, the durability of manufactured geopolymer samples under the attack of 10% magnesium sulfate and 10% sodium sulfate solution was investigated. 180 cycles of freezing and thawing were also tested. The experimentally obtained results investigate the durability of geopolymer mortar prepared with fly ash (class F) and alkali activator. Three different quarry dust wastes replaced the river sand aggregate: limestone, marble, and basalt powder as fine filler aggregate in three different replacement ratios of 25%, 50%, and 75% to produce ten series of geopolymer composites. The geopolymer samples' visual appearance, weight changes, UPV, and strength properties were studied for up to 12 months at different time intervals of exposure to sulfate solutions to investigate sulfate resistance. In addition, Scanning Electron Microscopy (SEM), EDS, and XRD were used to study the microstructure of the samples. It was beneficial to include quarry waste as a filler aggregate in durability and mechanical properties. The compact matrix was demonstrated by microstructural analysis of the manufactured specimens. The geopolymer mortars immersed in sodium sulfate showed less strength reduction and deterioration than magnesium sulfate, indicating that magnesium sulfate is more aggressive than sodium sulfate. Therefore, it is concluded that using waste dust interrogation with partial replacement of river sand with fly ash-based geopolymers has satisfactory results in terms of durability properties of freeze-thaw and sulfate resistance.

Evaluation of incorporating metakaolin to evaluate durability and mechanical properties of concrete

  • Joshaghani, Alireza;Moeini, Mohammad Amin;Balapour, Mohammad
    • Advances in concrete construction
    • /
    • 제5권3호
    • /
    • pp.241-255
    • /
    • 2017
  • Concrete is known to be the most used construction material worldwide. The environmental and economic aspects of Ordinary Portland Cement (OPC) containing concrete have led research studies to investigate the possibility of incorporating supplementary cementitious materials (SCMs) in concrete. Metakaolin (MK) is one SCM with high pozzolanic reactivity generated throughout the thermal activation of high purity kaolinite clay at a temperature ranging from $500^{\circ}C$ to $800^{\circ}C$. Although many studies have evaluated the effect of MK on mechanical properties of concrete and have reported positive effects, limited articles are considering the effect of MK on durability properties of concrete. Considering the lifetime assessment of concrete structures, the durability of concrete has become of particular interest recently. In the present work, the influences of MK on mechanical and durability properties of concrete mixtures are evaluated. Various experiments such as slump flow test, compressive strength, water permeability, freeze and thaw cycles, rapid chloride penetration and surface resistivity tests were carried out to determine mechanical and durability properties of concretes. Concretes made with the incorporation of MK revealed better mechanical and durability properties compared to control concretes due to combined pozzolanic reactivity and the filler effect of MK.

인공지반용 고수밀 기반 자기치유성 콘크리트의 내구특성에 관한 연구 (Studies on the Durable Characteristics of Self-Healing Concrete with High Water-Tightness for Artificial Ground)

  • 송태협;박지선;김병윤
    • 대한건축학회논문집:구조계
    • /
    • 제35권9호
    • /
    • pp.199-206
    • /
    • 2019
  • Experimental study on the durability characteristics to examine the feasibility of concrete with high water-tightness and self-healing performance to minimize maintenance of concrete for artificial ground is as follows. 1) When blending agent, swelling agents, and curing accelerator were added on the ternary system cement with blast-furnace slag fine particles and fly ash to give a self-healing property, higher blending strengths by 82% at design standard strength of 24MPa and by 74% at design strength of 30MPa, respectively could be obtained. 2) The permeability test for the specimens having high water-tightness and no shrinkage showed that the permeability was reduced at maximum of 98%. However, the permeability was decreased as the design strength was increased, showing the reduction rate of 87% at the design strength of 50MPa. 3) The depth of carbonation of blast-furnace slag and fly ash was increased in all the specimens compared with those of OPC only. However, as the material age was increased, carbonation penetration depth was decreased compared with the reference blend. 4) Compared with the reference blending using only OPC, the freeze-thaw resistance was higher in the case of blending with 40% of blast-furnace slag and 10% of fly ash at the design standard strength of 50MPa. In addition, the freeze-thaw resistance in general was superior in the design standard strength of 50MPa with the lower water-binder ratio (W/B) as compared with the design standard strength of 24MPa and 30MPa with the high water-binder ratios.

합성섬유 및 바이오 폴리머를 혼입한 3D 프린팅 모르타르의 재료특성 (Material Properties of 3D Printed Mortars Produced with Synthetic Fibers and Biopolymers)

  • 김효정;이병재;김윤용
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권4호
    • /
    • pp.78-85
    • /
    • 2023
  • 3D 프링팅 출력물에서 발생할 수 있는 수축 균열을 저감하기 위해 합성섬유를 보강하고, 선인장의 줄기(cactus stem, CS)를 활용한 바이오 폴리머 혼화제를 혼입하여 제조한 3D 프린팅용 모르타르의 재료특성을 평가하였다. 셀룰로우즈계 혼화제 (methylcellulose, MC)의 대체재로 CS 10% 일부 치환할 경우, 타설방법과 상관없이 9.84~23.92% 압축강도가 증가하는 것으로 나타났다. 또한, 타설방법과 상관없이 Plain 대비 수축변화, 동결융해, 균열 저항성이 개선됨을 나타냈다. 이는 CS를 일부 치환함으로써 다당류 폴리머 구조가 증가되어 내구성이 개선되는 것으로 판단된다. 섬유 배합의 경우, 섬유의 종류 및 혼입량이 압축강도와 동결융해에 영향을 미치지 않는 것으로 확인되었다. 섬유 혼입에 의해 수축변화와 균열 저항성에 효과적인 것으로 나타났다. 종합적인 결과, 3D 프린팅 모르타르 배합시 MC 대신 CS 10% 일부 치환하고 섬유를 보강할 경우 섬유 종류 및 혼입량과 상관없이 내구성, 균열 저항성에 효과적인 것으로 나타났다.

고로(高爐)슬래그 미분말(微分末)을 사용한 콘크리트의 증기양생(蒸氣養生)에 따른 강도(强度) 및 내구특성(耐久特性) (Strength and Durability Properties of Concretes Using Ground Granulated Blast-Furnace Slag According to Steam Curing Types)

  • 홍창우;장호성;정원경
    • 자원리싸이클링
    • /
    • 제15권4호
    • /
    • pp.52-59
    • /
    • 2006
  • 본 연구에서는 고로슬래그 미분말을 사용한 콘크리트의 증기양생에 따른 강도 및 내구특성을 평가하였다. 주요 실험변수로는 고로슬래그 미분말 혼입률 변화(0%, 10%, 30%, 50%, 70%)와 증기양생의 유 무로 설정하였다. 그리고 고로슬래그 미분말 혼입 콘크리트의 증기양생에 따른 특성분석을 위하여 압축강도와 염소이온 침투저항성시험,동결응해저항성시험,황산침식저항성시험 등을 실시하였다. 실험결과, 고로슬래그 미분말을 혼화재로 사용한 콘크리트의 증기양생에 따른 압축강도 및 염소이온 침투저항성은 고로슬래그 미분말의 혼입률이 증가할수록 증대되었다. 또한, 동결융해저항성은 고로슬래그 미분말 혼입률 70%를 제외한 모든 시험체에서 상대동탄성계수 90%이상 유지되었다. 황산침식저항성은 고로슬래그 미분말을 50%이상 혼입하였을 경우 향상되는 것으로 나타났다.