• 제목/요약/키워드: free-surface boundary condition

검색결과 192건 처리시간 0.031초

복소 경계요소법에 의한 비선형 자유수면문제 연구 (A Complex Velocity Boundary Element Method for Nonlinear Free Surface Problems)

  • 홍석원
    • 한국해양공학회지
    • /
    • 제4권1호
    • /
    • pp.62-70
    • /
    • 1990
  • Cauchy의 적분공식을 복소속도(complex velocity)에 적용하여 포텐시얼 유동을 해석하는 복소경계요소법이 개발되었다. 이 결과로 얻어지는 적분방정식은 경계면에서의 접선속도(tangential velocity)와 법선속도(normal velocity)의 함수로 주어진다. 자유수면에서의 접선속도의 시간변화(evolution of tangential velocity)를 수식화하기 위하여 새로운 비선형 동역학적 자유수면경계조건(nonlinear dynamic free surface boundary condition)을 유도하였다. 복소포텐시얼 대신 복소속도를 이용하는 이 방법은 유장내의 특이점(field singularity)을 용이하게 고려할 수 있으며, 수치미분없이 직접 경계면에서의 유속을 해로서 구하게 된다. 그러나 자유수면이 존재하는 문제의 경우에는, 자유수면에서의 동역학적 경계조건을 만족 시키기 위한 계산과정에 접선 벡타의 변화량을 추정하는 것이 포함되게 되어, 계산과정이 다소 복잡하게 된다.

  • PDF

자유수면 아래에서 회전하는 프로펠러 주위 유동 수치 해석 (Numerical Analysis of Flow around Propeller Rotating Beneath Free Surface)

  • 박일룡
    • 한국해양공학회지
    • /
    • 제29권6호
    • /
    • pp.427-435
    • /
    • 2015
  • This paper provides the numerical results of a simulation of the flow around a propeller working beneath the free surface. A finite volume method is used to solve the unsteady Reynolds averaged Navier-Stokes (URANS) equations, where the wave-making problem is solved using a volume-of-fluid (VOF) method. The numerical analysis focuses on the propeller wake structure affected by the free surface, where we consider another free surface boundary condition that treats the free surface as a rigid wall surface. The propeller wake under the effect of these two free surface conditions shows a reduction in the magnitude of the longitudinal and vertical flow velocities, and its vortical structures strongly interact with the free surface. The thrust and torque coefficient under the free surface effect decrease about 3.7% and 3.1%, respectively. Finally, the present numerical results show a reasonable agreement with the available experimental data.

로터 제자리비행에 적용된 CFD/FreeWake 연계방법의 원거리 경계조건에 대한 연구 (A Study on the Far-Field Boundary Condition of Tightly Coupled CFD/FreeWake Method in Hover)

  • 위성용;이재훈;권장혁;이덕주;정기훈;김승범
    • 한국항공우주학회지
    • /
    • 제35권11호
    • /
    • pp.957-963
    • /
    • 2007
  • 본 논문에서는 CFD/FreeWake 연계해석방법을 이용하여 헬리콥터 로터의 공력을 해석하였다. 연계해석방법은 CFD를 이용하여 로터주변의 공력을 얻고, 후류의 거동은 FreeWake를 이용하여 모사한다. FreeWake 모델은 CFD의 경계조건을 제공하고, CFD는 후류형성을 위한 로터블레이드 양력변화율을 제공하는 방법으로 연계된다. CFD/FreeWake 연계해석방법은 다른 로터공력해석 방법에 비하여 높은 정확도와 계산 시간 절감으로 효율적인 계산을 가능하도록 한다.

Free Surface Flow in a Trench Channel Using 3-D Finite Volume Method

  • Lee, Kil-Seong;Park, Ki-Doo;Oh, Jin-Ho
    • 한국수자원학회논문집
    • /
    • 제44권6호
    • /
    • pp.429-438
    • /
    • 2011
  • In order to simulate a free surface flow in a trench channel, a three-dimensional incompressible unsteady Reynolds-averaged Navier-Stokes (RANS) equations are closed with the ${\kappa}-{\epsilon}$ model. The artificial compressibility (AC) method is used. Because the pressure fields can be coupled directly with the velocity fields, the incompressible Navier-Stokes (INS) equations can be solved for the unknown variables such as velocity components and pressure. The governing equations are discretized in a conservation form using a second order accurate finite volume method on non-staggered grids. In order to prevent the oscillatory behavior of computed solutions known as odd-even decoupling, an artificial dissipation using the flux-difference splitting upwind scheme is applied. To enhance the efficiency and robustness of the numerical algorithm, the implicit method of the Beam and Warming method is employed. The treatment of the free surface, so-called interface-tracking method, is proposed using the free surface evolution equation and the kinematic free surface boundary conditions at the free surface instead of the dynamic free surface boundary condition. AC method in this paper can be applied only to the hydrodynamic pressure using the decomposition into hydrostatic pressure and hydrodynamic pressure components. In this study, the boundary-fitted grids are used and advanced each time the free surface moved. The accuracy of our RANS solver is compared with the laboratory experimental and numerical data for a fully turbulent shallow-water trench flow. The algorithm yields practically identical velocity profiles that are in good overall agreement with the laboratory experimental measurement for the turbulent flow.

회전된 엇갈린 격자를 이용한 탄성파 모델링에의 CPML 경계조건 적용 (Application of Convolutional Perfectly Matched Layer Method to Numerical Elastic Modeling Using Rotated Staggered Grid)

  • 조창수;이희일
    • 지구물리와물리탐사
    • /
    • 제12권2호
    • /
    • pp.183-191
    • /
    • 2009
  • 탄성파 수치 모형 계산에 있어서 널리 사용되는 엇갈린 격자 방법이 아니라 회전된 엇갈린 격자 방법을 사용하여 탄성파 수치 모사를 수행하였다. 표준 엇갈린 격자 방법에서는 특별한 자유 경계조건을 적용하여야 하는 단점이 있지만 회전된 격자 방법에서는 물성으로 진공 또는 공기층을 부여함으로써 자유 경계조건을 실현가능하다는 것을 확인할 수 있었다. 파동전파에 있어서 유한 경계 조건에서 발생하는 인공 반사파를 제거하기 위해 PML (Perfectly Matched Layer)의 파동식 분해라는 단점을 극복할 수 있고 좋은 성능을 보이는 CPML (Convolutional Perfectly Matched Layer)법을 회전된 엇갈린 격자법(RSG: Rotatged Staggered Grid)에 적용하였다. 회전된 격자 유한 차분법에서 CPML의 고주파수 흡수 특성과 에너지 흡수율 조사, Cerjan법의 감쇠를 비교한 결과 흡수경계조건으로 좋은 성능을 확인하였다. 유체와 고체의 모형에 대한 경계에 대하여서도 매우 효과적으로 경계면에서 발생하는 반사파를 제거할 수 있음을 알 수 있었다.

사각용기에서 발생하는 고점성 유체의 슬로싱 유동 (Sloshing Flow of Highly-Viscous Fluid in a Rectangular Box)

  • 박준상
    • 한국가시화정보학회지
    • /
    • 제17권3호
    • /
    • pp.39-45
    • /
    • 2019
  • A study on the sloshing flow of highly-viscous fluid in a rectangular box was made by both of theoretical approach and experimental visualization method. Assuming a smallness of external forcing to oscillate the container, it was investigated a linear sloshing flow of highly-viscous fluid utilizing asymptotic analysis by Taylor-series expansion as a small parameter Re (≪1) in which Re denotes Reynolds number. The theory predict that, during all cycles of sloshing, a linear shape of free surface will prevail in a bulk zone and it has confirmed in experiment. The relevance of perfect slip boundary condition, adopted in theoretical approach, to the bulk zone flow at the container wall was tested in experiment. It is found that quasi-steady coated thin film, which makes a lubricant layer between bulk flow and solid wall, is generated on the wall and the film makes a role to perfect slip boundary condition.

내재적 경계 조건을 이용한 자유표면 유동 수치해석 (Numerical Simulation on the Free Surface using implicit boundary condition)

  • 이공희;백제현
    • 한국전산유체공학회지
    • /
    • 제4권1호
    • /
    • pp.19-26
    • /
    • 1999
  • This paper describes a numerical method for predicting the incompressible unsteady laminar three-dimensional flows with free-surface. The Navier-Stokes equations governing the flows have been discretized by means of finite-difference approximations, and the resulting equations have been solved via the SIMPLE-C algorithm. The free-surface is defined by the motion of a set of marker particles and the interface behaviour was investigated by means of a "Lagrangian" technique. Using the GALA concept of Spalding, the conventional mass continuity equation is modified to form a volumetric or bulk-continuity equation. The use of this bulk-continuity relation allows the hydrodynamic variables to be computed over the entire flow domain including both liquid and gas regions. Thus, the free-surface boundary conditions are imposed implicitly and the problem formulation is greatly simplified. The numerical procedure is validated by comparing the predicted results of a periodic standing waves problems with analytic solutions. The results show that this numerical method produces accurate and physically realistic predictions of three-dimensional free-surface flows.

  • PDF

Redistance 방정식의 경계조건이 슬로싱 문제의 level set 해석에 미치는 영향 (EFFECT OF THE BOUNDARY CONDITION OF REDISTANCE EQUATION ON THE LEVEL SET SOLUTION OF SLOSHING PROBLEM)

  • 최형권
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.165-169
    • /
    • 2009
  • The effect of the Dirichlet boundary condition for the redistance equation of level set method on the solutionof sloshing problem is investigated by adopting four Dirichlet boundary conditions. For the solution of the incompressible Navier-Stokes equations, P1P1 four-step fractional finite element method is employed and a least-square finite element method is used for the solutions of the two hyperbolic type equations of level set method; advection and redistance equation. ALE (Arbitrary Lagrangian Eulerian) method is used to deal with a moving computational domain. It has been shown that the free surface motion in a sloshing tank is strongly dependent on the type of the Dirichlet boundary condition and the results of broken dam and sloshing problems using various Dirichlet boundary conditions are discussed and compared with the existing experimental results.

  • PDF

The deformation of a free surface due to the impact of a water droplet

  • Kwon, Sun-Hong;Park, Chang-Woo;Lee, Seung-Hun;Shin, Jae-Young;Choi, Young-Myung;Chung, Jang-Young;Isshiki, Hiroshi
    • International Journal of Ocean System Engineering
    • /
    • 제1권1호
    • /
    • pp.28-31
    • /
    • 2011
  • An attempt was made to compute the free surface deformation due to the impact of a water droplet. The Cauchy Poisson, i.e. the initial value problem, was solved with the kinematic and dynamic free surface boundary conditions linearized. The zero order Hankel transformation and Laplace transform were applied to the related equations. The initial condition for the free surface profile was derived from a captured video image. The effect of the surface tension was not significant with the water mass used in this investigation. The computed and observed free surface deformations were compared.

Simulation of Turbulent Flow and Surface Wave Fields around Series 60 $C_B$=0.6 Ship Model

  • Kim, Hyoung-Tae;Kim, Jung-Joong
    • Journal of Ship and Ocean Technology
    • /
    • 제5권1호
    • /
    • pp.38-54
    • /
    • 2001
  • A finite difference method for calculating turbulent flow and surface wave fields around a ship model is evaluated through the comparison with the experimental data of a Series 60 $C_B$=0.6 ship model. The method solves the Reynolds-averaged Navior-Stokes Equations using the non-staggered grid system, the four-stage Runge-Kutta scheme for the temporal integration of governing equations and the Bladwin-Lomax model for the turbulence closure. The free surface waves are captured by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and free-surface conforming grids are generated at each time step so that one of the grid surfaces coincides always with the free surface. The computational results show an overall close agreement with the experimental data and verify that the present method can simulate well the turbulent boundary layers and wakes as well as the free-surface waves.

  • PDF