• Title/Summary/Keyword: free water

Search Result 3,576, Processing Time 0.028 seconds

Study on the Chlorine-Resistant Bacteria Isolated from Water Pipe Network (상수도관망에서 분리한 잔류염소 내성균에 관한 연구)

  • Hyun, Jae-Yeoul;Yoon, Jong-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.334-341
    • /
    • 2011
  • The free residual chlorine of tap water samples, collected from 266 faucets on the water pipe network in Daegu City, was between 0.1 and 0.79 mg/L. On microorganic tests, general bacteria and the coliform goup were not detected and thus the tap water was turned out to be fit to drink. In particular, samples of which free residual chlorine was 0.1 mg/L and over were cultured in R2A agar media at $25^{\circ}C$ for 7 days, and as a result heterotrophic bacteria were detected in 65.9% of samples; (1). The closer tap water got to the faucet from the stilling basin, the lower residual chlorine concentration became but the more the bacterial count became. And, more bacteria were detected in the R2A agar medium than in the PCA medium. (2). In the case of separated strains, most colonies were reddish or yellowish. 16S rRNA sequence was identified as Methylobacterium sp. and Williamsia sp., and yellow strain was identified as Sphingomonas sp., Sphingobium sp., Novosphingobium sp., Blastomonas sp., Rhodococcus sp. and Microbacterium sp. White strain was identified as Staphylococcus sp. (3). Sterilized tap water in polyethylene bottles was inoculated with separated strain and was left as it was for 2 months. As a result, bio-film was observed in tap water inoculated with Methylobacterium sp. and Sphingomonas sp. It was found that heterotrophic bacteria increased when free residual chlorine was removed from tap water in the water pipe network. Thus, there is a need to determine a base value for heterotrophic bacteria in order to check the cleanliness of tap water in the water pipe network.

The Size Distribution of Free Water Paths in Heartwood of Softwood by Centrifugal Method - The Difference between Earlywood and Latewood - (원심법에 의한 침엽수 심재부 유효수분이동경로의 반경분포 - 조재와 만재의 비교 -)

  • Park, Jong Su;Chun, Su Kyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.61-70
    • /
    • 2003
  • The size distribution of the free water paths between earlywood and latewood for six species in the heartwood of softwoods was estimated from the amount of dehydrated free water under various centrifugal fields, such as 2,200, 3,300, 4,800 and 6,900 rpm. The centrifugal method is based on the concept that water movement occurs by the balance of centrifugal force and water potential by meniscus. Water stops where the pressure differential is zero. In the centrifugal field, only two factors affect water movement in wood, that is, centrifugal force and water potential. Also, the water permeability was evaluated from the relationship between the water saturation ratio after the centrifugal treatment and the measure of water potential in specimen. The results showed that Cryptpmeria japonica had clear peaks at 0.70 ㎛ in earlywood and at 0.50 ㎛ in latewood. Tsuga sieboldii and Larix kaemferi had peaks at 0.50 and 0.30 ㎛ in both earlywood and latewood, respectively. Abies firma showed peaks at 0.70 ㎛ in earlywood and at 0.30 ㎛ in latewood. The water permeability of earlywood was higer than that of latewood for all softwoods except Pseudotsuga menziesii.

Bacterial Regrowth in Water Distribution Systems and Its Relationship to the Water Quality: Case Study of Two Distribution Systems in Korea

  • Yoon, Tae-Ho;Lee, Yoon-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.262-267
    • /
    • 2004
  • This study was done to observe the occurrence of heterotrophic bacteria in terms of free chlorine residuals in two different water distribution systems, which belongs to both K and Y water treatment plant of S city in Korea. The data analyzed in the distribution systems show that the free chlorine residuals decreased from 0.10 to 0.56 mg/l for K, and 0.51 to 0.78 mg/l for Y. The decay of free chlorine is clearly higher in both March and August than in January. The HPC in the distribution systems are ranged from 0 to 40 cfu/ml for K, 0 to 270 cfu/ml for Y, on $R_2$A medium. In particular, its level is relatively high at the consumer's ground storage tanks, taps, and the point-of-end area of Y. The predominant genera that were studied in the distribution systems were Acinetobacter, Sphingomonas (branch of Pseudomonas), Micrococcus, Bacillus, Staphylococcus. The diversity of heterotrophic bacteria increases in the end-point area. Most of them are either encapsulated cells or of Gram-positve cocci. In conclusion, the point-of-end area in distribution systems shows the longer flow distance from the water treatment plants, along with a greater diversity and a higher level of heterotrophic bacteria, due to the significant decay of free chlorine residuals.

Relationship between Bacterial Regrowth and Free chlorine Residuals in Water Distribution System

  • Lee, Yoon-Jin;Yoon, Tae-Ho;Jun, Byong-Ho;Oh, Kyoung-Doo;Nam, Sang-Ho
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.136-139
    • /
    • 2003
  • This study is to observe the occurrence of heterotrophic bacteria in terms of free chlorine residuals in two different water distribution system which belongs to both K and Y water treatment plant of S city of Korea. The data analyzing in distribution systems (DS) shows that the free chlorine residuals decrease from 0.10 to 0.56 mgmg/L for K, and 0.51 to 0.78 mg/L for Y. The decay of free chlorine is clearly higher in both March and August than those of in January. The HPC in DS are ranged from 0 to 40 CFU/mL for K, 0 to 270 CFU/mL for Y, on R2A medium. In particular, its level is relatively high at consumers ground storage tanks, taps and point-of-end area of Y. The predominant genera is studied in distribution systems are Acinetobacter, Sphingomonas (branch of Pseudomonas), Micrococcus, Bacillus, Staphylococcus. The diversity of heterotrophic bacteria increase in the end-point area. Most of them are either encapsulated cells or cocci of gram-positve. In conclusion, the point-of-end area in distribution systems shows the longer flow distance from water treatment plants, the greater diversity and higher level of heterotrophic bacteria due to the significant decay of free chlorine residuals.

  • PDF

A study on the treatment of water discharge from the water treatment plant using end-free submerged membrane - Causes and solution of membrane fouling - (자유 말단형 침지식 분리막을 이용한 정수장 배출수 처리 연구 - 막오염 발생 원인과 해결 방안 -)

  • Kim, Jun-Hyun;Jang, Jung-Woo;Kim, Jin-Ho;Park, Kwang-Duck
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.2
    • /
    • pp.93-104
    • /
    • 2020
  • As water resources are limited and legal regulations are strengthened, there is a growing need to reuse residuals in WTP(Water Treatment Plant). In this study, membrane filtration system was constructed and its operation method was studied for water quality stabilization and reuse of WTP residuals. The operation parameters were stable for 1 year and 6 months. Membrane fouling was identified as particulate pollution (activated carbon) and inorganic pollution (manganese). The membrane system was operated steadily with raw water of high concentration SS(Suspended solid) containing activated carbon because membrane fouling was reduced by the effect of End-Free type. In the case of inorganic contamination, dissolved manganese eluted by chemicals and acted as a membrane fouling source, and the operating conditions for minimizing membrane fouling. were confirmed by newly developing application methods and types of cleaning chemicals. Based on the results, design parameters for reducing manganese membrane fouling were derived.

Exogenous-Water-Induced Thermal and Mechanical Effects on Dental Hard Tissue by the Er:YAG Laser: Free-running Mode (외부의 물과 Er:YAG Laser의 작용에 의한 Dental Hard Tissue에서의 열과 역학적 효과: Free-running 방식)

  • Kwon, Y.H.;Frederickson, C.J.;Motamedi, M.;Rastegar, S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.380-384
    • /
    • 1997
  • This study was performed to understand the exogenous-water-drop induced thermomechanical effect on the tooth in the free-running Er:YAG laser mode for the proper use of water as a laser energy absorber and coolant in dentistry. The ree-running Er:YAG laser was used in the dental hard tissue ablation study. A Microjet system was employed to dispense precise water drops. Ablation rate, recoil momentum, and temperature rise in the pulp cavity were measured with and without an exogenous water drop on the tooth surface. Exogenous water enhanced ablation rate in the thick tooth in which the ablation rate on the dry surface does not increase linearly but shows plateau. Optimal exogenous water volume was shifted from 2 nl to 4 nl as the laser energy was increased from 48 mJ to 145 mJ. The magnitude of the recoil momentum was increased as the volume of exogenous water increased. The results of this study suggest that we must pay attention to the recoil momentum or recoil pressure study or the optimal and safe usage of water in the dental treatment because these mechanical effects depend on the volume of exogenous water on the tooth surface.

  • PDF

Energy Dissipation of Water Flow over a Drop

  • Lee, Jiyong;Lim, Yosup;Jang, Jinhee;Kang, Seokkoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.375-379
    • /
    • 2016
  • Recently derived energy dissipation equation by Chamani(2008) and the profile function of the free overfall by Marchi(1993) were verified with present experiment data. The experiment was conducted in hydraulic laboratory, Hanyang University where the flume is 7m long and 0.44m wide, and the height of the drop structure is 0.205m. Water depth and free overfall profile data were collected using an ultra sonic distance sensor and photographic images. The time-averaged water depth data and the free overfall profile were analyzed to examine the energy dissipation pattern over the drop structure

  • PDF

A study on Water Quality Changes in Distribution System (Factor analysis of deterioration of water quality & Modelling of free chlorine) (상수도 배관망에서의 수질변화에 관한 연구 (수질악화의 영향인자 분석과 잔류염소 모델링))

  • Lee, Hyun Dong;Chung, Won Sik;Moon, Sook Mi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.3
    • /
    • pp.59-66
    • /
    • 1997
  • Although it produces well-treated water in water treatment plant, water quality at the tap can be changed depending on the state of pipes. It is because water quality deteriorates as plant water passes through pipeline networks. Therefore, the improvement of not only water treatment technology but also O & M of water pipelines is required to supply good water to consumers. The purpose of the study was to obtain the basic data of control technology for water quality in pipes through investigating water quality in distribution system. We selected 11 sampling sites and investigated water quality from plant to endpoint of distribution system. we also simulated decreasing tendency of free chlorine through pipeline network. As the result of water quality test, all parameters were below allowable levels, but some parameters had the possibility of being over levels. So there must be more work to set up proper countermeasure for violable parameters.

  • PDF

An Optimization of the Porous Asphalt Pavement Permeability Function Focusing on the Surface Free Energy of Polymer Fog-Coat Methods

  • Ohmichi Massaru;Yamanokuchi Hiroshi;Maruyama Teruhiko
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.13-22
    • /
    • 2006
  • Surface fog coating methods to porous pavements with a polymer, that contains MMA as a main ingredient, are being widely used in Japan and called 'Top-Coat Processes'. They have lots of effects such as to prevention of the pavement void choking, improvement of the water permeability of the pavements and so on. The purpose of this research is to show the characterization of the polymer to optimize the functions of the polymer fog-coat methods. This study focused on the difference of 'wetting' by water among polymers used for the fog coatings, and calculation the surface free energy from the water contact angle on each material. At the end, the water permeability test were conducted using porous asphalt mixtures that were coated with several kinds of polymers. The permeability was also measured on the specimens that were forcibly choked by muddy water and the resistance to choking was compared. It is concluded that the reduction of the surface free energy between water and a polymer improves the life of the permeability functions of porous pavements. Improvement of water permeation capacity and void-blocking controlling effects can be quantitatively evaluated using the interfacial tension ($\gamma$sl) with water for the coating material (high-viscosity asphalt and hardening resin binder). Consequently, the smaller the $\gamma$sl of the coating material the higher the water permeation capacity and void-blocking controlling effects of the porous asphalt pavements.

  • PDF

Free surface effects on 2-D airfoils and 3-D wings moving over water

  • Bal, Sakir
    • Ocean Systems Engineering
    • /
    • v.6 no.3
    • /
    • pp.245-264
    • /
    • 2016
  • The iterative boundary element method (IBEM) developed originally before for cavitating two-dimensional (2-D) and three-dimensional (3-D) hydrofoils moving under free surface is modified and applied to the case of 2-D (two-dimensional) airfoils and 3-D (three-dimensional) wings over water. The calculation of the steady-state flow characteristics of an inviscid, incompressible fluid past 2-D airfoils and 3-D wings above free water surface is of practical importance for air-assisted marine vehicles such as some racing boats including catamarans with hydrofoils and WIG (Wing-In-Ground) effect crafts. In the present paper, the effects of free surface both on 2-D airfoils and 3-D wings moving steadily over free water surface are investigated in detail. The iterative numerical method (IBEM) based on the Green's theorem allows separating the airfoil or wing problems and the free surface problem. Both the 2-D airfoil surface (or 3-D wing surface) and the free surface are modeled with constant strength dipole and constant strength source panels. While the kinematic boundary condition is applied on the airfoil surface or on the wing surface, the linearized kinematic-dynamic combined condition is applied on the free surface. The source strengths on the free surface are expressed in terms of perturbation potential by applying the linearized free surface conditions. No radiation condition is enforced for downstream boundary in 2-D airfoil and 3-D wing cases and transverse boundaries in only 3-D wing case. The method is first applied to 2-D NACA0004 airfoil with angle of attack of four degrees to validate the method. The effects of height of 2-D airfoil from free surface and Froude number on lift and drag coefficients are investigated. The method is also applied to NACA0015 airfoil for another validation with experiments in case of ground effect. The lift coefficient with different clearance values are compared with those of experiments. The numerical method is then applied to NACA0012 airfoil with the angle of attack of five degrees and the effects of Froude number and clearance on the lift and drag coefficients are discussed. The method is lastly applied to a rectangular 3-D wing and the effects of Froude number on wing performance have been investigated. The numerical results for wing moving under free surface have also been compared with those of the same wing moving above free surface. It has been found that the free surface can affect the wing performance significantly.