• Title/Summary/Keyword: free vibration

Search Result 2,114, Processing Time 0.034 seconds

Experimental Evaluation of Levitation and Imbalance Compensation for the Magnetic Bearing System Using Discrete Time Q-Parameterization Control (이산시간 Q 매개변수화 제어를 이용한 자기축수 시스템에 대한 부상과 불평형보정의 실험적 평가)

  • ;Fumio Matsumura
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.964-973
    • /
    • 1998
  • In this paper we propose a levitation and imbalance compensation controller design methodology of magnetic bearing system. In order to achieve levitation and elimination of unbalance vibartion in some operation speed we use the discrete-time Q-parameterization control. When rotor speed p = 0 there are no rotor unbalance, with frequency equals to the rotational speed. So in order to make levitatiom we choose the Q-parameterization controller free parameter Q such that the controller has poles on the unit circle at z = 1. However, when rotor speed p $\neq$ 0 there exist sinusoidal disturbance forces, with frequency equals to the rotational speed. So in order to achieve asymptotic rejection of these disturbance forces, the Q-parameterization controller free parameter Q is chosen such that the controller has poles on the unit circle at z = $exp^{ipTs}$ for a certain speed of rotation p ( $T_s$ is the sampling period). First, we introduce the experimental setup employed in this research. Second, we give a mathematical model for the magnetic bearing in difference equation form. Third, we explain the proposed discrete-time Q-parameterization controller design methodology. The controller free parameter Q is assumed to be a proper stable transfer function. Fourth, we show that the controller free parameter which satisfies the design objectives can be obtained by simply solving a set of linear equations rather than solving a complicated optimization problem. Finally, several simulation and experimental results are obtained to evaluate the proposed controller. The results obtained show the effectiveness of the proposed controller in eliminating the unbalance vibrations at the design speed of rotation.

  • PDF

Buckling and Vibration Analysis of Antisymmetric Angle-ply laminated Composite Plates using a Three-dimensional Higher-order Theory (3차원 고차이론을 이용한 역대칭 앵글-플라이를 갖는 복합재료 적층판의 좌굴 및 진동해석)

  • Lee, Won Hong;Han, Sung Cheon;Chun, Kyoung Sik;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.97-107
    • /
    • 2003
  • To obtain a more accurate response from larninated composite structures, the effect of transverse shear deformation, transverse normal strain/stress, and nonlinear variation of in-plane displacements vis-$\\grave{a}$-vis the thickness coordinate should be considered in the analysis. The improved higher-order theory was used to determine the critical buckling load and natural frequencies of laminated composite structures. Solutions of simply supported laminated composite plates and sandwiches were obtained in closed form using Navier's technique, with the results compared with calculated results using the first order and other higher-order theories. Numerical results were presented for fiber-reinforced laminates, which show the effects of ply orientation, number of layers, side-toithickness ratio, and aspects ratio.

Piezoelectric nanocomposite sensors assembled using zinc oxide nanoparticles and poly(vinylidene fluoride)

  • Dodds, John S.;Meyers, Frederick N.;Loh, Kenneth J.
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.55-71
    • /
    • 2013
  • Structural health monitoring (SHM) is vital for detecting the onset of damage and for preventing catastrophic failure of civil infrastructure systems. In particular, piezoelectric transducers have the ability to excite and actively interrogate structures (e.g., using surface waves) while measuring their response for sensing and damage detection. In fact, piezoelectric transducers such as lead zirconate titanate (PZT) and poly(vinylidene fluoride) (PVDF) have been used for various laboratory/field tests and possess significant advantages as compared to visual inspection and vibration-based methods, to name a few. However, PZTs are inherently brittle, and PVDF films do not possess high piezoelectricity, thereby limiting each of these devices to certain specific applications. The objective of this study is to design, characterize, and validate piezoelectric nanocomposites consisting of zinc oxide (ZnO) nanoparticles assembled in a PVDF copolymer matrix for sensing and SHM applications. These films provide greater mechanical flexibility as compared to PZTs, yet possess enhanced piezoelectricity as compared to pristine PVDF copolymers. This study started with spin coating dispersed ZnO- and PVDF-TrFE-based solutions to fabricate the piezoelectric nanocomposites. The concentration of ZnO nanoparticles was varied from 0 to 20 wt.% (in 5 % increments) to determine their influence on bulk film piezoelectricity. Second, their electric polarization responses were obtained for quantifying thin film remnant polarization, which is directly correlated to piezoelectricity. Based on these results, the films were poled (at 50 $MV-m^{-1}$) to permanently align their electrical domains and to enhance their bulk film piezoelectricity. Then, a series of hammer impact tests were conducted, and the voltage generated by poled ZnO-based thin films was compared to commercially poled PVDF copolymer thin films. The hammer impact tests showed comparable results between the prototype and commercial samples, and increasing ZnO content provided enhanced piezoelectric performance. Lastly, the films were further validated for sensing using different energy levels of hammer impact, different distances between the impact locations and the film electrodes, and cantilever free vibration testing for dynamic strain sensing.

Computational Structural Dynamic Analysis of a Gyrocopter Using CFD Coupled Method (CFD기법을 연계한 자이로콥터의 전산구조동역학 해석)

  • Kim Hyun-Jung;Jung Se-Un;Park Hyo-Keun;Yang Chang-Hak;Kim Dong-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.295-302
    • /
    • 2006
  • In this study, computational structural dynamic analyses of a gyrocopter have been conducted considering unsteady dynamic hub-loads due to rotating blades. 3D CATIA models with detailed mechanical parts we constructed and virtually assembled into the complete aircraft configuration. The dynamic loading generated by rotating blades in the forward flight condition are calculated by a commercial computational fluid dynamics (CFD) code such as FLUENT. Modal based transient and frequency response analyses are used to efficiently investigate vibration characteristics of the gyrocopter. Free vibration analysis results for different fuel and pilot conditions, frequency responses and transient responses for critical flight conditions are also presented in detail.

A study on High Frequency DC-DC Converter Drive using a Piezoelectric Transformer (압전 변압기를 이용한 고주파 DC-DC 컨버터 구동에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Choi, Gi-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.476-484
    • /
    • 2010
  • Recently, as the piezoelectric transformer technology develops, piezoelectric transformer may become a variable alternative to magnetic transformers in various applications. Because it was have to favorable characteristics such as electromagnetic-noise free, compact size, higher efficiency, and superior power density, linkage flux, noiseless, etc. its resonance frequency was used to output waveform of a sine wave. In this paper, the switching mode power supply of about 87.2[KHz] is driven by the multilayer thickness vibration mode piezoelectric transformer and the DC to DC converter drive circuit using an electrical equivalent circuit is proposed. Also, it was possible to drive power source device of the high-luminance LED by propose circuits.

Seismic response of non-structural components attached to reinforced concrete structures with different eccentricity ratios

  • Aldeka, Ayad B.;Dirar, Samir;Chan, Andrew H.C.;Martinez-Vazquez, Pedro
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1069-1089
    • /
    • 2015
  • This paper presents average numerical results of 2128 nonlinear dynamic finite element (FE) analyses of lightweight acceleration-sensitive non-structural components (NSCs) attached to the floors of one-bay three-storey reinforced concrete (RC) primary structures (P-structures) with different eccentricity ratios. The investigated parameters include the NSC to P-structure vibration period ratio, peak ground acceleration, P-structure eccentricity ratio, and NSC damping ratio. Appropriate constitutive relationships were used to model the behaviour of the RC P-structures. The NSCs were modelled as vertical cantilevers fixed at their bases with masses on the free ends and varying lengths so as to match the vibration periods of the P-structures. Full dynamic interaction was considered between the NSCs and P-structures. A set of seven natural bi-directional ground motions were used to evaluate the seismic response of the NSCs. The numerical results show that the acceleration response of the NSCs depends on the investigated parameters. The accelerations of the NSCs attached to the flexible sides of the P-structures increased with the increase in peak ground acceleration and P-structure eccentricity ratio but decreased with the increase in NSC damping ratio. Comparison between the FE results and Eurocode 8 (EC8) predictions suggests that, under tuned conditions, EC8 provisions underestimate the seismic response of the NSCs mounted on the flexible sides of the plan-irregular RC P-structures.

Influence of Alumina on Hydrothermal Synthesis of 11Å Tobermorite (알루미나가 11Å Tobermorite의 수열합성에 미치는 영향)

  • Yim Going;Yim Chai Suk
    • Korean Journal of Materials Research
    • /
    • v.15 no.2
    • /
    • pp.97-105
    • /
    • 2005
  • [ $11\AA$ ] tobermorite$(5CaO{\cdot}6SiO_2{\cdot}5H_2O)$ is synthesized from the mixtures of calcium hydroride and quartz using alumina in a molar ratio $Ca(OH)_2/SiO_2$ of 0.8 at $180^{\circ}C$ for 8 and 24 hrs under saturated steam pressure. The influence of alumina on the formation of $11\AA$ tobermorite was investigated by X-ray diffraction, differential thermal analysis and infrared spectroscopy. $11\AA$ tobermorite containing increasingly larger amounts of aluminum showed a shift of the basal spacing from 11.3 to $11.6\AA$. In general, there was a direct linear relation between the basal spacing and added content of alumina. The differential thermal analysis curves showed that $11\AA$ tobermorite with increasing alumina contents exhibited the exothermic peak at high temperature, namely $11\AA$ tobermorite containing aluminum gave a sharp exothermic peak at temperature around $850\~860^{\circ}C$ in the case of $S_3\~S_5$. The absorption band at $1607\~1620cm^{-1}$ is attributed to the bending vibration of water, and the position of the main O-H stretching and Si-O lattice vibration of $11\AA$ tobermorite at 3500 and $965cm^{-1}$ respectively is not altered. Consequently the existence of alumina accelerates the crystallization of $11\AA$ tobermorite, and that the aluminum ion appears to substitute for the silicon ion in $11\AA$ tobermorite structure. Al-containing tobermorite is distinguished from Al-free tobermorite.

A Study on Vibration Characteristics of Plate Structures Spot-Welded with respect to Area Ratio and Distance Ratio (점용접된 판 구조물의 면적비와 거리비에 따른 진동특성 연구)

  • Han, Dong-Seop;Ahn, Sung-Chan;Ahn, Chan-Woo;Han, Geun-Jo
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.43-49
    • /
    • 2002
  • In this Paper, the mechanical behavior of two reかangular plates spot-welded under free vibration is investigated in detail. The focus of the analysis is to evaluate the effect of thickness of reinforced plates with equivalent thickness. The results of this the investigation are compared with detailed finite element analysis end experiments of the plates spot-welded for various parameters, such as aspect ratio, arm ratio, and distance ratio of spot-welding Points. The conclusion obtained are as followed. 1. The effect thickness due to spot-weld is very large, such as 55% in comparison with area ratio of spot-welding joint is just 4.52%. 2 The effect of thickness with respect to the distance ratio is maximized when the distance ratio is 0.4.

Evaluation of Analysis Technique for Piles Driven by Vibration through Parametric Study (매개변수연구를 통한 진동타입말뚝 해석기법 평가)

  • Lee, Seung-Hyun;Lee, Su-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1749-1755
    • /
    • 2014
  • Technique for analyzing a pile installed by vibrohammer was developed and parametric studies were executed in order to evaluate reliability of the developed technique. Comparing the accelerations obtained from parametric studies of varying eccentric moment and frequency, it can be seen that magnitude of maximum acceleration was proportional to the eccentric moment and square of frequency. It can also be seen that amplitude of displacement was roughly proportional to the eccentric moment but has nothing to do with the frequency. It can be said that all of the analysis results reflect characteristics of behavior of a pile in case of free vibration. Comparing the dynamic load transfer curves, maximum dynamic unit toe resistance was constant regardless of the eccentric moment and the frequency and it can be seen that dynamic unit skin friction was affected by the eccentric moment not by frequency. Comparing all of the analysis results, it can be said that the developed technique is reliable.

Analysis of Signal Transfer Characteristics of Implantable Middle Ear System using Acoustic Model (청각모델을 이용한 이식형 인공중이 시스템의 신호 전달 특성 해석)

  • 송병섭;조진호
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.227-233
    • /
    • 2002
  • The IME(implantable middle ear) system is Promising due to its ability to free from sound feedback and Produce a good sound quality and intelligibility with low distortion even if it is operated with high gain for severe hearing impaired. The differential electromagnetic vibration transducer. which was developed for using in IME system and has two small magnets attached the same Pole facing in the coil. is not influenced by environmental external magnetic field. Besides, it has high vibration efficiency and good frequency response characteristics. In this Paper, using acoustic model of the transducer and ear model of normal Person. the signal transfer characteristics of the IME system are analyzed and investigated From the differences of the characteristics between normal ear and the IME system, it is Possible that design of the IME system that have the signal transfer characteristics similar to normal person's ear.