• 제목/요약/키워드: free transverse vibration

검색결과 218건 처리시간 0.021초

Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams

  • Berrabah, H.M.;Tounsi, Abdelouahed;Semmah, Abdelwahed;Adda Bedia, E.A.
    • Structural Engineering and Mechanics
    • /
    • 제48권3호
    • /
    • pp.351-365
    • /
    • 2013
  • In this paper, unified nonlocal shear deformation theory is proposed to study bending, buckling and free vibration of nanobeams. This theory is based on the assumption that the in-plane and transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. In addition, this present model is capable of capturing both small scale effect and transverse shear deformation effects of nanobeams, and does not require shear correction factors. The equations of motion are derived from Hamilton's principle. Analytical solutions for the deflection, buckling load, and natural frequency are presented for a simply supported nanobeam, and the obtained results are compared with those predicted by the nonlocal Timoshenko beam theory and Reddy beam theories.

An efficient partial mixed finite element model for static and free vibration analyses of FGM plates rested on two-parameter elastic foundations

  • Lezgy-Nazargah, M.;Meshkani, Z.
    • Structural Engineering and Mechanics
    • /
    • 제66권5호
    • /
    • pp.665-676
    • /
    • 2018
  • In this study, a four-node quadrilateral partial mixed plate element with low degrees of freedom (dofs) is developed for static and free vibration analysis of functionally graded material (FGM) plates rested on Winkler-Pasternak elastic foundations. The formulation of the presented finite element model is based on a parametrized mixed variational principle which is developed recently by the first author. The presented finite element model considers the effects of shear deformations and normal flexibility of the FGM plates without using any shear correction factor. It also fulfills the boundary conditions of the transverse shear and normal stresses on the top and bottom surfaces of the plate. Beside these capabilities, the number of unknown field variables of the plate is only six. The presented partial mixed finite element model has been validated through comparison with the results of the three-dimensional (3D) theory of elasticity and the results obtained from the classical and high-order plate theories available in the open literature.

An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Advances in aircraft and spacecraft science
    • /
    • 제5권6호
    • /
    • pp.671-689
    • /
    • 2018
  • Bending, buckling and free vibration responses of functionally graded (FG) higher-order beams resting on two parameter (Winkler-Pasternak) elastic foundation are studied using a new inverse hyperbolic beam theory. The material properties of the beam are graded along the thickness direction according to the power-law distribution. In the present theory, the axial displacement accounts for an inverse hyperbolic distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the top and bottom surfaces of the beams. Hamilton's principle is employed to derive the governing equations of motion. Navier type analytical solutions are obtained for the bending, bucking and vibration problems. Numerical results are obtained to investigate the effects of power-law index, length-to-thickness ratio and foundation parameter on the displacements, stresses, critical buckling loads and frequencies. Numerical results by using parabolic beam theory of Reddy and first-order beam theory of Timoshenko are specially generated for comparison of present results and found in excellent agreement with each other.

Free vibrations of AFG cantilever tapered beams carrying attached masses

  • Rossit, Carlos A.;Bambill, Diana V.;Gilardi, Gonzalo J.
    • Structural Engineering and Mechanics
    • /
    • 제61권5호
    • /
    • pp.685-691
    • /
    • 2017
  • The free transverse vibrations of axially functionally graded (AFG) cantilever beams with concentrated masses attached at different points are studied in this paper. The material properties of the AFG beam, consisting of metal and ceramic, vary continuously in the axial direction according to an established law form. Approximated solutions for the title problem are obtained by means of the Ritz Method. The influence of the material variation on the natural frequencies of vibration of the functionally graded beam is investigated and compared with the influence of the variation of the cross section. The phenomenon of dynamic stiffening of beams can be observed in various situations. The accuracy of the procedure is verified through results available in the literature that can be represented by the model under study.

단면적이 변하는 곡선보의 진동해석 (Free Vibration Analysis of Curved Beams with Varying Cross-Section)

  • 강기준;김영우
    • 한국전산구조공학회논문집
    • /
    • 제22권5호
    • /
    • pp.453-462
    • /
    • 2009
  • 미분구적법을 이용하여 전단변형을 고려하지 않은 단면적이 변하는 곡선 보의 면내 자유진동을 해석하였다. 다양한 경계조건 및 굽힘 각에 따른 진동수를 계산하였고, 그 결과를 다른 수치해석들과 비교하였다. 미분구적법은 비교적 적은 요소를 사용하고도 정확한 해석결과를 보여주었고, 수정된 결과를 추가적으로 제시하였다.

Dynamic instability and free vibration behavior of three-layered soft-cored sandwich beams on nonlinear elastic foundations

  • Asgari, Gholamreza;Payganeh, Gholamhassan;Fard, Keramat Malekzadeh
    • Structural Engineering and Mechanics
    • /
    • 제72권4호
    • /
    • pp.525-540
    • /
    • 2019
  • The purpose of the present work was to study the dynamic instability of a three-layered, symmetric sandwich beam subjected to a periodic axial load resting on nonlinear elastic foundation. A higher-order theory was used for analysis of sandwich beams with soft core on elastic foundations. In the higher-order theory, the Reddy's third-order theory was used for the face sheets and quadratic and cubic functions were assumed for transverse and in-plane displacements of the core, respectively. The elastic foundation was modeled as nonlinear's type. The dynamic instability regions and free vibration were investigated for simply supported conditions by Bolotin's method. The results showed that the responses of the dynamic instability of the system were influenced by the excitation frequency, the coefficients of foundation, the core thickness, the dynamic and static load factor. Comparison of the present results with the published results in the literature for the special case confirmed the accuracy of the proposed theory.

Free vibration analysis of Bi-Directional Functionally Graded Beams using a simple and efficient finite element model

  • Zakaria Belabed;Abdeldjebbar Tounsi;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mohamed Bourada;Mohammed A. Al-Osta
    • Structural Engineering and Mechanics
    • /
    • 제90권3호
    • /
    • pp.233-252
    • /
    • 2024
  • This research explores a new finite element model for the free vibration analysis of bi-directional functionally graded (BDFG) beams. The model is based on an efficient higher-order shear deformation beam theory that incorporates a trigonometric warping function for both transverse shear deformation and stress to guarantee traction-free boundary conditions without the necessity of shear correction factors. The proposed two-node beam element has three degrees of freedom per node, and the inter-element continuity is retained using both C1 and C0 continuities for kinematics variables. In addition, the mechanical properties of the (BDFG) beam vary gradually and smoothly in both the in-plane and out-of-plane beam's directions according to an exponential power-law distribution. The highly elevated performance of the developed model is shown by comparing it to conceptual frameworks and solution procedures. Detailed numerical investigations are also conducted to examine the impact of boundary conditions, the bi-directional gradient indices, and the slenderness ratio on the free vibration response of BDFG beams. The suggested finite element beam model is an excellent potential tool for the design and the mechanical behavior estimation of BDFG structures.

Benchmark Modal Stress-Resultant Distributions for Vibrating Rectangular Plates with Two Opposite Edges Free

  • Y. Xiang;Wang, C.M.;T. Utsunomiya;C. Machimdamrong
    • Computational Structural Engineering : An International Journal
    • /
    • 제1권1호
    • /
    • pp.49-57
    • /
    • 2001
  • This paper presents exact solutions for the modal stress-resultant distributions for vibrating rectangular Mindlin plates involving two opposite sides simply supported while the other two sides free. These exact stress-resultants of vibrating plates with free edges, hitherto unavailable, are very important because they serve as benchmark solutions for checking numerical solutions and methods. Using the exact solutions of a square plate, this paper highlights the problem of determining accurate stress-resultants, especially the transverse shear forces and twisting moments in thin plates, when employing the widely used numerical methods such as the Ritz method and the finite element method. Thus, this study shows that there is a need for researchers to develop refinements to the Ritz method and the finite element method for determining very accurate stress-resultants in vibrating plates with free edges.

  • PDF

자기장 및 열하중을 받는 복합재료 원통셸의 진동해석 (Vibration Analysis of Composite Cylindrical Shells Subjected to Electromagnetic and Thermal Fields)

  • 박상윤;김성균;최종운;송오섭
    • 한국소음진동공학회논문집
    • /
    • 제22권8호
    • /
    • pp.791-799
    • /
    • 2012
  • In this paper free vibration analysis of symmetric and cross-ply elastic laminated shells based on FSDT was performed through discretization of equations of motion and boundary condition. Structural model of laminated composite cylindrical shells subjected to a combination of magnetic and thermal fields is developed via Hamilton's variational principle. These coupled equations of motion are based on the electromagnetic equations(Faraday, Ampere, Ohm, and Lorenz equations) and thermal equations which are involved in constitutive equations. Variations of dynamic characteristics of composite shells with applied magnetic field, temperature gradient, and stacking sequence are investigated and pertinent conclusions are derived.

물과 접촉하는 동일한 두 원판의 동적 특성 (Dynamic Characteristics of Two Identical Circular Plates in Contact with Water)

  • 정경훈;김태완;김강수;박근배
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.347-352
    • /
    • 1998
  • An analytical method for evaluating the free vibration of two circular plates coupled with water was developed by assuming the clamped boundary condition of the plates and an ideal fluid. The method was applied to analyze the transverse vibration modes, in-phase and out-of-phase, and the results were compared to those obtained by the finite element method (FEM) using a commercial ANSYS 5.2 software. It was found that the theoretical results can predict well the coupled natural frequencies for all in-phase modes with good accuracy. However, the analytical method shows some discrepancies compared with FEM analysis in predicting the coupled natural frequency of the out-of-phase modes, except when m = 0, the zero nodal circle. The analytical method also applied to evaluate the characteristics of the natural frequency with respect to the major parametric variation in mode numbers and distance between the circular plates.

  • PDF