• Title/Summary/Keyword: free surface condition

Search Result 487, Processing Time 0.031 seconds

Sn/Cu 도금액의 보충이 도금제품의 도금피막특성에 미치는 영향 (The Supplement of Sn/Cu, Plating Solution Affects in Plating Skim Quality of the Plating Product)

  • 전택종;고준빈;이동주
    • 한국정밀공학회지
    • /
    • 제26권7호
    • /
    • pp.112-119
    • /
    • 2009
  • The purpose of this study is to evaluate the evaluation of process yield performed by using Sn & Cu treatment on the surface to optimize process condition for Lead-free solder application. The materials which are used for the New Surface Treatment study are Semi-Dulling plating for high speed Sn/Cu alloy of Soft Alloy GTC-33 Pb free known as "UEMURA Method" and plating substrate is alloy 42.Especially in lead-free plating process, it is important to control plating thickness and Copper composition than Sn/Pb plating. Evaluated and controlled plating thickness $12{\pm}3um$, Copper composition $2{\pm}1%$, plating particle and visual inspection. The optimization of these parameters and condition makes it makes possible to apply Sn/Cu Lead-free solder from Sn/Pb alloy.

펌프 섬프장 흡입 조건에 따른 자유표면 보텍스 변동에 관한 연구 (A Study on the Change of Free Surface Vortex according to Intake Conditions in the Pump Sump)

  • 박영규;이규명;최윤환;이연원
    • 한국가시화정보학회지
    • /
    • 제9권4호
    • /
    • pp.74-79
    • /
    • 2011
  • In this study the change of free surface vortex is represented at different times according to height of water and with or without curtain wall installation. The air volume fraction is investigated at each condition of water level and the influence about creation of vortex is analyzed. The height of sump intake is taken as 100mm and the water level is divided into 5 steps. The sump model is the TSJ model and the curtain wall is applied by HI standard of America. The results shows that the free surface vortex can be identified on the isotropic surface at air volume fraction 1%~5% and the vortices make an air column from the free surface to the sump intake and are created and destroyed repeatedly. In the higher water level, less air is absorbed into the intake pipe. After curtain wall installation, the suction rate of the air volume fraction is decreased by 6.7%. The result of the vortex motion according to time, works on a cycle.

유리용융로에서 자유표면 열유속과 좌우벽면 온도차에 의한 자연대류 (Natural convection induced by free surface heat flux and temperature difference between left and right walls in glass melting furnace)

  • 임광옥;이관수
    • 대한기계학회논문집B
    • /
    • 제20권11호
    • /
    • pp.3706-3713
    • /
    • 1996
  • A numerical study on natural convection induced by free surface heat flux and cold left and hot right walls in glass melting furnaces has been performed. A function of heat flux derived from the combustion environments of actual glass melting furnace is applied to thermal boundary condition at free surface. Fundamentally there exist two flow cells in cavity (left counterclockwise one and right clockwise one). The effects of heat flux and Rayleigh number are investigated through two-dimensional steady-state assumption. The convection strength of two flow cell located in left region continuously increases. In the mean time the strength of flow cell in right region increases and then decreases. Critical Rayleigh number in which two flow cells take place above and below show linear dependence on the free surface heat flux. To maintain the traditional flow pattern (left and right flow cells) in glass melting furnace, Rayleigh number is recommended to be below 10$^{5}$ .

Experimental and Numerical Study on the Characteristics of Free Surface Waves by the Movement of a Circular Cylinder-Shaped Submerged Body in a Single Fluid Layer

  • Jun-Beom Kim;Eun-Hong Min;Weoncheol Koo
    • 한국해양공학회지
    • /
    • 제37권3호
    • /
    • pp.89-98
    • /
    • 2023
  • Analyzing the interactions of free surface waves caused by a submerged-body movement is important as a fundamental study of submerged-body motion. In this study, a two-dimensional mini-towing tank was used to tow an underwater body for analyzing the generation and propagation characteristics of free surface waves. The magnitude of the maximum wave height generated by the underwater body motion increased with the body velocity at shallow submerged depths but did not increase further when the generated wave steepness corresponded to a breaking wave condition. Long-period waves were generated in the forward direction as the body moved initially, and then short-period waves were measured when the body moved at a constant velocity. In numerical simulations based on potential flow, the fluid pressure changes caused by the submerged-body motion were implemented, and the maximum wave height was accurately predicted; however, the complex physical phenomena caused by fluid viscosity and wave breaking in the downstream direction were difficult to implement. This research provides a fundamental understanding of the changes in the free surface caused by a moving underwater body.

사각용기에서 발생하는 고점성 유체의 슬로싱 유동 (Sloshing Flow of Highly-Viscous Fluid in a Rectangular Box)

  • 박준상
    • 한국가시화정보학회지
    • /
    • 제17권3호
    • /
    • pp.39-45
    • /
    • 2019
  • A study on the sloshing flow of highly-viscous fluid in a rectangular box was made by both of theoretical approach and experimental visualization method. Assuming a smallness of external forcing to oscillate the container, it was investigated a linear sloshing flow of highly-viscous fluid utilizing asymptotic analysis by Taylor-series expansion as a small parameter Re (≪1) in which Re denotes Reynolds number. The theory predict that, during all cycles of sloshing, a linear shape of free surface will prevail in a bulk zone and it has confirmed in experiment. The relevance of perfect slip boundary condition, adopted in theoretical approach, to the bulk zone flow at the container wall was tested in experiment. It is found that quasi-steady coated thin film, which makes a lubricant layer between bulk flow and solid wall, is generated on the wall and the film makes a role to perfect slip boundary condition.

초정밀가공기를 이용한 무산소동 절삭특성 (Cutting Characteristics of Oxygen-Free Using the Ultra Precision Machining)

  • 고준빈;김건희;원종호
    • 한국정밀공학회지
    • /
    • 제19권12호
    • /
    • pp.120-126
    • /
    • 2002
  • The needs of ultra-precisely machined parts are increasing more and more. But the experimental data required to ultra precision machining of nonferrous metal is insufficient. The behavior of cutting in micro cutting area is different from that of traditional cutting because of the size effect. Copper is widely used as optical parts such as LASER reflector's mirror and multimedia instrument. In experimental, after oxygen-free copper is machined by ultra precision machine with natural mono crystal diamond tool (NCD) and synthetic poly crystal diamond tool (PCD), we compared chip formation and tool's wear according to used tool. Also, we researched optimized cutting condition with the results measured according to cutting condition such as spindle speed, feed rate and depth of cut. As a result, the optimal working condition that makes good surface roughness is obtained. The surface roughness is good when spindle speed is above 80 m/min, and feed rate is small and depth of cut is above 0.5 ${\mu}{\textrm}{m}$. In cutting of klystron anode and cavity 3.2 nmRa of surface roughness is obtained.

금형의 고정도ㆍ고능률 가공기술 (Advanced Machining Technology for Die Manufacturing)

  • 김정석;이득우;정융호;강명창;이기용;김경균;김석원
    • 한국정밀공학회지
    • /
    • 제17권4호
    • /
    • pp.48-68
    • /
    • 2000
  • The high-speed machining technology of difficult-to-cut material is needed to achieve the high-efficiency of die manufacturing. The high-speed machining is applied in automobile, airplane and electricityㆍelectro industry etc, because it can improve machining efficiency and productivity with high speed, high power and high rotation. In this study, high speed machinability, tool wear characteristics and its monitoring, characteristics of damaged layer, machinability of difficult-to-cut material, characteristics of a free curved surface and method of CAD/CAM system were introduced to acquire the shortening of machining time, the improvement of machining efficiency and the high quality of machined surface. Therefore, we establish the stabilization condition of difficult-to-cut material machining and present the optimal cutting condition for high-efficiency cutting.

  • PDF

천해역에 수표면 및 수중방류된 사각형제트의 흐름 거동 (Flow behaviors of square jets surface discharged and submerged discharged into shallow water)

  • 김대근;김동옥
    • 상하수도학회지
    • /
    • 제25권5호
    • /
    • pp.627-634
    • /
    • 2011
  • In the present study, the flow behaviors of square jets surface discharged and submerged discharged into shallow water were each simulated using computational fluid dynamics, and the results were compared. As for the verification of the models, the results of the hydraulic experiment conducted by Sankar, et al. (2009) were used. According to the results of the verification, the present application of computational fluid dynamics to the flow analysis of square jets discharged into shallow water was valid. As for the wall jet, which is one form of submerged discharges, at the bottom wall boundary, the peak velocity of the jet rapidly moved from the center of the jet to the bottom wall boundary due to the restriction of jet entrainment and the no-slip condition of the bottom wall boundary, and, as for the surface discharge, because jet entrainment is limited on the free water surface, the peak velocity of the jet moved from the center of the jet to the free water surface. This is because jet entrainment is restricted at the bottom wall boundary and the surface so that the momentum of the central core of the jet is preserved for considerable time at the bottom wall boundary and the surface. In addition, due to the effect of the bottom wall boundary and the free water surface, the jet discharged into shallow water had a smaller velocity diminution rate near the discharge outlet than did the free jet; at a location where it was so distant from the discharge outlet that the vertical profile of the velocity was nearly equal (b/x =20~30), moreover, it had a far smaller velocity diminution rate than did the free jet due to the effect of the finite depth.

다층고조를 갖는 원형 실린더에 의한 전자파 산란 : OSRC 방법 (Electromagnetic Wave Scattering from Multilayered Circular Cylinder : OSRC Approach)

  • 이화춘;이대형;최병하
    • 전자공학회논문지A
    • /
    • 제32A권3호
    • /
    • pp.38-44
    • /
    • 1995
  • The scattered electric field from a multilayered circular dielectric cylinder is caculated. Approximate boundary condition used in on-surface radiation boundary condition(OSRC) method has been applied to all the boundary surface of N-layered dielectric cylinder. It was assumed that scattered electric field at inner boundary surface in one region transmitted to the adjacent region at outer boundary surface. In the whole region, the unknown coefficients of electric field are acquired by the given incident electric field with ease. Electric field distribution at each boundary surface and the scattered electric field in free space are taken with the calculated unknown coefficients. the results obtainted were compared with those results that were used by regular surface boundary condition.

  • PDF

A 3-Dimentional Radiation Diffraction Problem Analysis by B-Spline Higher-Order Panel Method

  • Kim Gun-Do;Lee Chang-Sup
    • Journal of Ship and Ocean Technology
    • /
    • 제10권1호
    • /
    • pp.10-26
    • /
    • 2006
  • The radiation problem for oscillating bodies on the free surface has been formulated by the over-determined Green integral equation, where the boundary condition on the free surface is satisfied by adopting the Kelvin-type Green function and the irregular frequencies are removed by placing additional control points on the free surface surrounded by the body. The B-Spline based higher order panel method is then applied to solve the problem numerically. Because both the body geometry and the potential on the body surface are represented by the B-Splines, that is in polynomials of space parameters, the unknown potential can be determined accurately to the order desired above the constant value. In addition, the potential expressed in B-Spline can be differentiated analytically to get the velocity on the surface without introducing any numerical error. Sample computations are performed for a semispherical body and a rectangular box floating on the free surface for six-degrees of freedom motions. The added mass and damping coefficients are compared with those by the already-validated constant panel method of the same formulation showing strikingly good agreements.