• Title/Summary/Keyword: free radical damage

Search Result 377, Processing Time 0.029 seconds

Antioxidant Activities and Cytoprotective Effects of Lonicera japonica Thunb. Extract and Fraction against Oxidative Stress (인동덩굴 추출물과 분획물의 항산화 활성 및 산화적 스트레스에 대한 세포 보호 효과)

  • Lee, Ye Seul;Yun, Mid Eum;Lee, Yun Ju;Park, Young Min;Lee, Sang Lae;Park, Soo Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.1
    • /
    • pp.18-28
    • /
    • 2018
  • In this study, the antioxidant activities and cytoprotective effects against oxidative stress of Lonicera japonica Thunb. 50% ethanol extract and ethyl acetate fraction were investigated. Using the 1,1-diphenyl-2-picrylhydrazyl assay, the free radical scavenging activity (FSC50) of L. japonica Thunb. 50% ethanol extract and ethyl acetate fraction was determined as 152.00 and $77.25{\mu}g/ml$, respectively. To measure the reactive oxygen species (ROS) scavenging activity, the total antioxidant capacity (OSC50) was determined by using a luminol-dependent chemiluminescence assay. The antioxidant activity of the ethyl acetate fraction ($0.33{\mu}g/ml$) was approximately four times stronger than that of the 50% ethanol extract ($1.12{\mu}g/ml$). The protective effect against $^1O_2$-induced cellular damage of human erythrocytes (${\tau}_{50}$) was 46.0 min at $10{\mu}g/ml$ of the 50% ethanol extract and 52.3 min at $1{\mu}g/ml$ of the ethyl acetate fraction. We also investigated the cytoprotective effects against oxidative stress induced by $H_2O_2$ and the intracellular ROS scavenging activity in response to UVB irradiation and found that the extract and fraction protected human skin cells from damage and reduced ROS. These results confirmed that L. japonica Thunb. was a valuable plant-derived natural antioxidant with potential for development as an antioxidative functional ingredient.

Cytoprotective Effects and Gene Expression Patterns Observed Based on the Antioxidant Activity of Lonicera japonica Extract (금은화 추출물의 항산화 효과를 통한 세포 보호효과 및 유전자 발현 양상)

  • Cho, Won June;Yoon, Hee Seung;Kim, Yong Hyun;Kim, Jung Min;Yoo, Il Jae;Han, Man-Deuk;Bang, In Seok
    • Journal of Life Science
    • /
    • v.23 no.8
    • /
    • pp.989-997
    • /
    • 2013
  • In this study, based on the antioxidative effects in organic solvent fractions obtained from the main methanolic extract of L. japonica, the protective cellular effects and gene expression patterns of ethyl acetate fractions on $H_2O_2$-induced Raw 264.7 cell death ($IC_{50}$) were analyzed. The antioxidant activity of the fractions measured using DPPH free radical scavenging activity increased in a dose-dependent manner, and the $ED_{50}$ exhibited the highest $39.56{\mu}g/ml$ in the ethyl acetate fraction. In addition, the ethyl acetate fractions' cell viability on $H_2O_2$-induced Raw 264.7 cell damage increased in a concentration-dependent manner, showed a visible cell survival rate of 82.49% at a concentration of $100{\mu}g/ml$. The gene expression patterns related to the ethyl acetate fractions' cytoprotective effect in $H_2O_2$-induced Raw 264.7 cell damage presented similar patterns to those of BHA. In comparative analysis for antioxidant activity-related genes affected by ethyl acetate fractions and BHA in $H_2O_2$-induced Raw 264.7 cells, both ethyl acetate fractions and BHA showed very similar gene expression patterns, but the gene expression level of the heme oxygenase 1 (Hmox1) gene making antioxidant enzymes in cells was four times higher in ethyl acetate fractions than BHA. In inflammation-related genes in $H_2O_2$induced Raw 264.7 cells, the T-box transcription factor (Tbx21) gene was expressed about two times more frequently in the ethyl acetate fraction treatment group, while it was expressed half as frequently in the BHA treatment group.

Study on the Antioxidant Effects of Nano-Selenium Microcapsule (Nano-Selenium Microcapsule의 항산화에 관한 연구)

  • Jeong, Hun;Yoo, Il-Su;Kim, Kyung-Sun;Lee, Soon-Young;Mun, Yeun-Ja;Jeon, Byoung-Kook;Ryu, Moon-Hee;Choi, Kyung-Soon
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.3
    • /
    • pp.564-569
    • /
    • 2012
  • Selenium was initially considered toxic to humans, but it was then discovered that selenium is essential for normal life processes. Selenium plays important roles in antioxidants. It is expected that chitosan microcapsules containing nano-selenium will be able to be used as a key material in bio-medical and cosmetic applications. The high concentration of chitosan derivatives guarantees increased antioxidative activity. Both inorganic and organic forms of selenium can be nutritional sources. The antioxidant properties of selenoproteins help prevent cellular damage from free radicals. The objective of this experiment was to study the antioxidative activity of chitosan nano-selenium. Our experiments were divided into five groups, in the presence of various concentrations(0.1%, 0.3%, 0.5%, 0.7%, and 0.9%) of chitosan. We performed an assessment of the antioxidant properties and cytotoxicity of respective concentrations of chitosan nano-selenium. The antioxidant activity was examined by the free radical scavenging activity on 1,1-diphenyl-2-picrylhydrazyl(DPPH) assay. The cytotoxicity effect was measured by means of 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay. As a result, the electron donating abilities of 0.1%, 0.3%, 0.5%, 0.7%, and 0.9% of chitosan nano-selenium exhibited effective andioxidant scavenging activity at 12.5 ${\mu}g/m{\ell}$ against DPPH radicals. 0.3% chitosan nano-selenium did not show cytotoxicity on human keratinocytes. In general, the cytotoxicity of 0.1% and 0.9% chitosan nano-selenium showed the lowest effects. Though low cytotoxicity of 0.5% and 0.7% chitosan nano-selenium exhibited 29.67% and 38.4% against human keratinocytes on adding 100 ${\mu}g/m{\ell}$ and 50 ${\mu}g/m{\ell}$, respectively, cell vitality was recovered with 200 ${\mu}g/m{\ell}$. These findings support the notion that chitosan nano-selenium may be useful as a new active ingredient source for bioactive compounds.

Antimicrobial, Antioxidant and Cellular Protective Effects against Oxidative Stress of Anemarrhena asphodeloides Bunge Extract and Fraction (지모 뿌리 추출물과 분획물의 항균활성과 항산화 활성 및 세포보호 연구)

  • Lee, Yun Ju;Song, Ba Reum;Lee, Sang Lae;Shin, Hyuk Soo;Park, Soo Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.4
    • /
    • pp.360-371
    • /
    • 2018
  • Extracts and fractions of Anemarrhena asphodeloides Bunge were prepared and their physiological activities and components were analyzed. Antimicrobial activities of the ethyl acetate and aglycone fractions were $78{\mu}g/ml$ and $31{\mu}g/ml$, respectively, for Staphylococcus aureus and $156{\mu}g/ml$ and $125{\mu}g/ml$, respectively, for Pseudomonas aeruginosa. 1,1-Diphenyl-2-picrylhydrazyl free radical scavenging activities ($FSC_{50}$) of 50% ethanol extract, ethyl acetate fraction, and aglycone fraction of A. asphodeloides extracts were $146.2{\mu}g/ml$, $23.19{\mu}g/ml$, and $71.06{\mu}g/ml$, respectively. The total antioxidant capacity ($OSC_{50}$) in an $Fe^{3+}$-EDTA/hydrogen peroxide ($H_2O_2$) system were $17.5{\mu}g/ml$, $1.5{\mu}g/ml$, and $1.4{\mu}g/ml$, respectively. The cytoprotective effect (${\tau}_{50}$) in $^1O_2$-induced erythrocyte hemolysis was 181 min with $4{\mu}g/ml$ of the aglycone fraction. The ${\tau}_{50}$ of the aglycone fraction was approximately 4-times higher than that of (+)-${\alpha}$-tocopherol (${\tau}_{50}$, 41 min). Analysis of $H_2O_2$-induced damage of HaCaT cells revealed that the maximum cell viabilities for the 50% ethanol extract, ethyl acetate fraction, and aglycone fraction were 86.23%, 86.59%, and 89.70%, respectively. The aglycone fraction increased cell viability up to 11.53% at $1{\mu}g/ml$ compared to the positive control treated with $H_2O_2$. Analysis of ultraviolet B radiation-induced HaCaT cell damage revealed up to 41.77% decreased intracellular reactive oxygen species in the $2{\mu}g/ml$ aglycone fraction compared with the positive control treated with ultraviolet B radiation. The findings suggest that the extracts and fractions of A. asphodeloides Bunge have potential applications in the field of cosmetics as natural preservatives and antioxidants.

Effects of Endocrine Disruptors (NP, DBP and BPA) on Sperm Characteristics and Development of IVF Embryos in Pig

  • Yuh, In Suh;Cheong, Hee Tae;Kim, Jong Taek;Park, In Chul;Park, Choon Keun;Yang, Boo Keun
    • Journal of Animal Science and Technology
    • /
    • v.55 no.4
    • /
    • pp.237-247
    • /
    • 2013
  • This study was to examine single or combined in vitro effects of environmental endocrine disruptors on boar sperm characteristics, oxidative stress damage in sperm and development of porcine IVF embryos. Addition of various concentration of NP (10, 20, $30{\mu}M$), DBP (10, 50, $100{\mu}M$) and BPA (1, 5 or $10{\mu}g/ml$) on boar sperm characteristics such as percentages of sperm motility, viability, membrane integrity and mitochondrial activity were dose-dependently decreased within 3, 6 or 9 hr incubation period (p<0.05). The overall detrimental effects increased with incubation time increasement. NP, DBP and BPA showed the detrimental effects on sperm membrane and mitochondria of energy production organelles affecting cell viability with the dependancy of dose and incubation time. In combination effects, NP ($10{\mu}M$) + DBP ($10{\mu}M$) significantly decreased boar general sperm characteristics for 3 or 6 hr incubation period compared with control (p<0.05). When both of NP and DBP concentrations (NP; $30{\mu}M$, DBP; $100{\mu}M$) increase, the detrimental effects on sperm characteristics were larger than those of low concentration combination (p<0.05). The inhibitory effects of NP ($30{\mu}M$) + BPA ($10{\mu}g/ml$) on sperm characteristics were larger than those of NP ($10{\mu}M$) + BPA ($1{\mu}g/ml$) (p<0.05). DBP ($100{\mu}M$) + BPA ($10{\mu}g/ml$) decreased sperm characteristics compared with the low concentration combination (DBP $10{\mu}M$ + BPA $1{\mu}g/ml$, p<0.05). This result indicates the detrimental effects of both chemicals on sperm characteristics were dose dependent. Addition of NP ($30{\mu}M$) + DBP ($100{\mu}M$), NP ($30{\mu}M$) + BPA ($10{\mu}g/ml$), DBP ($10{\mu}M$) + BPA ($1{\mu}g/ml$) or DBP ($100{\mu}M$) + BPA ($10{\mu}g/ml$) significantly increased lipid peroxidation for 3 or 6 hr incubation period (p<0.05) compared with no addition control. NP (${\geq}20{\mu}M$) decreased the percentages of IVF embryo development from morulae and blastocyst stages (p<0.05) and its detrimental effects were dose-dependant. BPA 0, 1, 5 or $10{\mu}g/ml$ decreased significantly and dose-dependently the percentage of morulae plus and blastocysts (p<0.05). Combinations of DBP ($100{\mu}M$) plus NP ($30{\mu}M$) and DBP ($100{\mu}M$) plus BPA ($10{\mu}g/ml$) did not affect on morulae and blastocyst development, but NP ($30{\mu}M$) plus BPA ($10{\mu}g/ml$) has significant detrimental effect on embryo development at these stages (p<0.05). These overall results indicate that the partial detrimental effects on boar sperm characteristics and embryo development by NP, DBP, BPA or the combination of these chemicals might be due to the increasement of lipid peroxidation and free radical formation in the cell and there were no specific interaction effects on boar sperm and embryo degeneration among the combined treatments.

Effect of Riboflavin Tetrabutylate on the Activity of Drug Metabolizing Enzyme and Lipid Peroxidation in Liver Microsomes of Rats (Riboflavin Tetrabutylate가 약물대사 효소 및 지질 과산화효소에 미치는 영향)

  • Lee, H.W.;Kim, W.J.;Hong, S.S.;Kwack, C.Y.;Hong, S.U.
    • The Korean Journal of Pharmacology
    • /
    • v.16 no.2 s.27
    • /
    • pp.45-53
    • /
    • 1980
  • Lipid peroxidation in vitro has been identified as a basic deteriorative reaction in cellular mechanism of aging processes, such as air pollution oxidant damage to cell and to the lung, chlorinated hydrocarbon hepatotoxicity. Many experimental evidences were reported by several investigators that lipid peroxidation could be one of the principle causes for the hepatotoxicity produced by $CCl_4$. It is now reasonably established that $CCl_4$ is activated to a free radical in vivo, that lipid peroxidation occurs very quickly in microsomes prepared from damaged livers, that the peroxidation is associated with loss of enzyme activity of microsomes, and that various antioxidants can protect animals against the hepatotoxic effect of $CCl_4$. Recent studies have drawn attention to some other feature of microsomal lipid peroxidation. Incubation of liver microsomes in the presence of NADPH has led to a loss of cytochrome $P_{450}$. However, the presence of an antioxidant prevented lipid peroxidation and preserved cytochrome $P_{450}$. Decrease of cytochrome $P_{450}$ in microsomes under in vitro incubation can be enhanced by $CCl_4 and these changes were parallel to a loss of microsomal polyunsaturated fatty acid and formation of malonaldehyde. The primary purpose of this experiment was to study the effect of riboflavin tetrabutylate on lipid peroxidation, specially, the relationship between lipid peroxidation and drug metabolizing enzyme system which is located in smooth endoplasmic recticulum as well as the effect of ritoflavin tetrabutylate on drug metabolizing enzyme system of animal treated with $CCl_4$. Albino rats were used for experimental animal. In order to induce drug metabolizing enzyme system, phenobarbital was injected intraperitoneally. $CCl_$ and riboflavin tetrabutylate were given intraperitoneally as solution in olive oil. Microsomal fraction was isolated from liver of animals and TBA value as well as the activity of drug metabolizing enzyme were measured in the microsomal fractions. The results are summerized as following. 1) The secobarbital induced sleeping time of $CCl_4$ treated rat was about 2 times longer than that of the control group. However, the pretreatment with riboflavin tetrabutylate inhibited completely the lengthened sleeping time due to $CCl_4$ treatment. Furthermore TBA value was significantly increased in $CCl_4$ treated rat in comparison to control group tut the increase of TBA value was prevented by the pretreatment with riboflavin tetrabutylate. On the other hand, the activity of hepatic drug metabolizing enzyme was decreased in $CCl_4$ group, however, the pretreatment with riboflavin tetrabutylate also prevented the decrease of the enzyme activity caused by $CCl_4$. 2) The effect of riboflavin tetrabutylate on TBA value and the activity of drug metabolizing enzyme in vitro was similar to in vivo results. Incubation of liver microsome from rat in the presence of $CCl_4$, $Fe^{++}$, or ascorbic acid has led to the marked increase of TBA value, however, the addition of riboflavin tetrabutylate in incubation mixture prevented significantly the increase of TBA value, suggesting the inhibition of lipid peroxidation. In accordance with TBA value, the activity of drug metabolizing enzyme was inhibited in the presence of $CCl_4$, $Fe^{++}$, ascorbic acid but the addition of riboflavin tetrabutylate protected the loss of the enzyme activity in microsome under in vitro incubation.

  • PDF

Effects of ischemic preconditioning, KATP channel on the SOD activation and apoptosis in ischemic reperfused skeletal muscle of rat (허혈양상화와 KATP 통로가 허혈후 재관류된 흰쥐의 골격근육에서 SOD 활성 및 apoptosis에 미치는 영향)

  • Abn, Dong-choon;Paik, Doo-jin;Yang, Hong-hyun
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.5
    • /
    • pp.878-895
    • /
    • 1999
  • Ischemic preconditioing (IPC), i.e., a preliminary brief episode of ischemia and reperfusion, has been shown to reduce the cell damage induced by long ischemia and reperfusion. Superoxide radical which is produced during reperfusion after ischemia was recognized as a factor of the ischemic injury and it is dismutated into $H_2O_2$ and $O_2$ by two types of intracellular superoxide dismutase (SOD), Cu,Zn-SOD in cytoplasm and Mn-SOD in mitochondria. Recently oxygen free radicals are suggested to induce the apoptosis, however mechanism of the reduced apoptosis by ischemic preconditioing was unknown, while many studies performed in mammalian heart indicated that ATP-sensitive $K^+$ ($K_{APT}$) channel activation related with the protective effects. The aim of present study is to investigate 1) whether IP upregulate the Cu,Zn-SOD and Mn-SOD activities, and 2) whether ischemic preconditioning decreases apoptosis via $K_{APT}$ channel activation in timely reperfused skeletal muscle after long ishemia. The experimental animals, Sprague-Dawley rats weighing 250~300g, were divided into 8 groups; 1) control group, 2) ischemic preconditioning only groups, 3) pinacidil, a $K_{APT}$ channel opener, treatment only groups, 4) glibenclamide, a $K_{APT}$ channel blocker, treatment only groups, 5) ischemia groups, 6) ischemia after IPC groups, 7) ischemia and pinacidil treatment groups, and 8) IP and ischemia after glibenclamide pretreatment groups. Animals of the control group were administered with the vehicle (DMSO) alone. Pinacidil (1mg/kg) was administered intravenously 5 minutes after initiation of ischemia, and glibenclamide (0.5mg/kg) was injected intravenously 20 minutes before IPC. In rats that were ischemic preconditioned, the left common iliac artery was occluded for 5 minutes followed by 5 minutes of reperfusion by three times using vascular clamp. Ischemia was done by occlusion of the same artery for 4 hours. The specimens of left rectus femoris muscle were obtained immediately (0 hour), 12 hours, 24 hours after drug administrations, IP or ischemia and reperfusion. The immunoreactivities of SOD and its alterations were observed by use of sheep antihuman Cu,Zn-SOD and Mn-SOD antibodies on the $10{\mu}m$ cryosections. The incidencies of apoptosis were observed by TUNEL methods with in situ apoptosis detection kit on $6{\mu}m$ paraffine section. The results obtained were as follows : 1. After IPC, immunoreactivities of Cu,Zn-SOD mainly in the small-sized fibers were increased by 24 hours, that of Mn-SOD at 0 hour and 24 hours. 2. No significant changes in immunoreactivities of SOD was observed in the pinacidil and in the glibenclamide treatment only groups, and in the ischemia only groups. 3. The immunoreactivities of the Cu,Zn-SOD were increased in the ischemia after IPC groups and the ischemia and pinacidil treatment groups. 4. The immunoreactivities of the Cu,Zn-SOD in the IPC and ischemia after glibenclamide pretreatment groups were not increased except for the 12 hours reperfusion group. But, Mn-SOD immunoreactivities were increased in the 0 hours, 12 hours and 24 hours after reperfusion. 5. In the control group, the IPC only groups, and the pinacidil treatment only groups, negative or trace apoptotic reactions were observed, but the positive apoptotic reaction occured in the glibenclamide treatment groups. 6. Moderate or many number of apoptosis were revealed in the ischemia groups, and also the IPC and ischemia after glibenclamide pretreatment group except for 12 hours and 24 hours after reperfusion. However, the incidence of apoptosis was decreased in the ischemia after IPC groups and in the ischemia and pinacidil treatment groups. 7. There is a coincidence between the increase of Cu,Zn-SOD immunoreactivities and the decrease of apoptosis in the presence of ischemia and reperfusion. These results suggest that the protective effects of ishemic preconditioing may related to the SOD activation, and the ischemic preconditioning decreases the apoptosis partially via $K_{APT}$ channel activation in timely reperfused rat skeletal muscle. It is also suggested that inhibition of apoptosis by IPC may related with the SOD activation.

  • PDF

Antioxidant and skin whitening effects of Inonotus obliquus methanol extract (차가버섯 메탄올 추출물의 항산화 및 미백효과)

  • Guk, Min-Hee;Kim, Dong-Ha;Lee, Chan;Jeong, Eun-Seon;Choi, Eun-Jae;Lee, Jae-Seong;Lee, Tae-Soo
    • Journal of Mushroom
    • /
    • v.11 no.2
    • /
    • pp.99-106
    • /
    • 2013
  • This study was initiated to investigate the skin whitening activities of methanol extracts from fruiting bodies of I. obliquus. The total polyphenols and flavonoids contents of I. obliquus methanol extracts were 31.85 mg/g and 28.33 mg/g, respectively. The methanol extract of the mushroom treated on B16/F10 melanoma and NIH3T3 cell lines did not show cytotoxic activity. 2,2-diphenyl-1-picrylhydrazyl(DPPH) free radical scavenging activity and chelating activity on ferrous ions of I. obliquus methanol extract were lower than those of positive control, tocopherol and BHT. The tyrosinase and L-DOPA inhibitory activities of the extract were lower than those of positive control, kojic acid and ascorbic acid. The tyrosinase and melanin synthesis inhibitory activities of the melanoma cells treated with the extract were comparable with positive control, arbutin. The experimental results suggested that methanol extract of I. obliquus contained inhibitory activities of tyrosinase and melanin synthesis in the B16/F10 melanoma cells by dose dependent manner. High ultra-violet absorption spectra in the range of 280-350 nm showed that I. obliquus extract could protect skin from UV radiation damage. Therefore, fruiting bodies of I. obliquus can be used for developing skin whitening, anti-UV and skin care agents.

Antioxidant and Cellular Protective Activities of Ecklonia cava Extracts against Reactive Oxyegen Species (감태(Ecklonia cava) 추출물의 항산화 및 세포보호 활성)

  • Yoo, Cha Young;Kim, Si Yun;Park, Jung Won;Sung, Soo An;Kim, Da Ae;Park, Jee Hyun;Xuan, Song Hua;Park, Soo Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.3
    • /
    • pp.287-294
    • /
    • 2015
  • In this study, we investigated the antioxidative effects of brown seaweed Ecklonia cava extract and its subfractions. All experiments were performed with 50% ethanol extract, ethyl acetate fraction and aglycone fraction of E. cava. The free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activities ($FSC_{50}$) of ethyl acetate fraction ($FSC_{50}=6.98{\mu}g/mL$) and aglycone fraction ($7.03{\mu}g/mL$) are similar to that of (+)-${\alpha}$-tocopherol ($8.98{\mu}g/mL$) which is a reference control. Reactive oxygen species (ROS) scavenging activity (total antioxidant capacity, $OSC_{50}$) of the aglycone fraction ($OSC_{50}=14.48{\mu}g/mL$) on ROS generated in $Fe^{3+}-EDTA/H_2O_2$ system using the luminol-dependent chemiluminescence assay was the strongest among all extract and fractions. However, all samples showed lower antioxidant activities than that of L-ascorbic acid ($6.88{\mu}g/mL$) known as a powerful antioxidant. The protective effect of 50% ethanol extract on the $^1O_2$-induced cellular damage of human erythrocytes was dependent on the concentration from 5 to $50{\mu}g/mL$. Both ethyl acetate fraction and aglycone fraction showed strong cellular protective activities at $10{\mu}g/mL$, where the cellular protective effects (${\tau}_{50}$) of each fraction were recorded 442.0 min and 539.9 min, respectively. Three kinds of extract/fractions of E. cava showed much greater cellular protective activities at $10{\mu}g/mL$ than that of liposoluble antioxidant (+)-${\alpha}$-tocopherol (40.6 min) which is a reference control. These results suggest E. cava extracts and its fractions can be applied as an antioxidant ingredient in a field of cosmetics.

Antioxidative Activity and Component Analysis of Prunella vulgaris L. Extract/Fractions (하고초 추출물의 항산화 활성 및 성분 분석)

  • Suh, Ji Young;Seong, Joon Seob;Yun, Mid Eum;Lee, Ye Seul;Ha, Ji Hoon;Park, Dong Soon;Park, Soo Nam
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.647-657
    • /
    • 2016
  • In this study, the antioxidative effects and active component analysis of 50% ethanol extract, ethyl acetate fraction and aglycone fraction obtained from Prunella vulgaris L. were investigated. The free radical scavenging activities ($FSC_{50}$) was investigated at 50% ethanol extract ($15.25{\mu}g/mL$), ethyl acetate fraction ($8.68{\mu}g/mL$), and aglycone fraction ($8.25{\mu}g/mL$) respectively. Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) in $Fe^{3+}-EDTA/H_2O_2$ system using the luminol-dependent chemiluminescence assay was investigated at 50% ethanol extract ($4.68{\mu}g/mL$), ethyl acetate fraction ($1.00{\mu}g/mL$), and aglycone fraction($1.02{\mu}g/mL$) respectively. In the cellular protective effect against $^1O_2$ induced cellular damage of human erythrocytes, extract/fractions of P. vulgaris L. were increased in a concentration dependent manner($1{\sim}25{\mu}g/mL$). Especially, ${\tau}_{50}$ of aglycone fraction at concentrations of $25{\mu}g/mL$ showed the most protective effects at 337.9 min. It's showed nine times higher (+)-${\alpha}$-tocopherol (${\tau}_{50}=38.7min$) as typical antioxidant in the $^1O_2$-induced photohemolysis of human erythrocytes. TLC and HPLC were used to analyse active components in the ethyl acetate fraction and aglycone fraction of P. vulgaris L. In ethyl acetate fraction, caffeic acid, rosmarinic acid, quercetin 3-${\beta}$-D-glucoside, rutin, kaempferol-3-O-rutinoside, astragalin (kaempferol-3-O-glucoside) were identified. In aglycone fraction, caffeic acid, rosmarinic acid, quercetin, kaempferol were identified. These results indicated that extract/fraction of P. vulgaris L. is may be used in cosmetics industry as natural antioxidants by quenching and/or scavenging $^1O_2$ and other ROS, and protecting cellular membranes.