• Title/Summary/Keyword: free magnetic layer

Search Result 106, Processing Time 0.033 seconds

Magnetic tunnel junctions with thin free layer

  • 임우창;박병국;배지영;이택동
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.68-69
    • /
    • 2002
  • Magnetic tunnel junctions은 최근 자기저항용 재료나 MRAM용 소자로 사용하기 위한 연구가 활발하게 진행되고 있다. Magnetic tunnel junction을 저자계, 저전력용 소자로 사용되기 위해서는, 작은 switching field 값과 uniform한 switching field 분포를 가져야 한다. Micromagnetic simulation을 통하여 free layer의 두께와 포화 자화 값이 감소함에 따라서 switching field가 감소함을 알 수 있었다. 본 연구에서는 얇은 free layer를 사용하여 magnetic tunnel junction을 제조하고, 얇은 free layer가 자기저항에 미치는 영향에 대하여 알아보았다. (중략)

  • PDF

Metastable Vortex State of Perpendicular Magnetic Anisotropy Free Layer in Spin Transfer Torque Magnetic Tunneling Junctions

  • You, Chun-Yeol;Kim, Hyungsuk
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.380-385
    • /
    • 2013
  • We find a metastable vortex state of the perpendicular magnetic anisotropy free layer in spin transfer torque magnetic tunneling junctions by using micromagnetic simulations. The metastable vortex state does not exist in a single layer, and it is only found in the trilayer structure with the perpendicular magnetic anisotropy polarizer layer. It is revealed that the physical origin is the non-uniform stray field from the polarizer layer.

Study on the two-dimensional Formation Control of Free Surface of Magnetic Fluid by Electromagnetic Force (전자기력에 의한 자성유체의 2차원 자유표면 형상 제어에 관한 연구)

  • 안창호;지병걸;이은준;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.979-982
    • /
    • 2003
  • In this study, because of change in electromagnetic force, deformation of the free surface motion of a magnetic fluid is changed. Deformation of the free surface motion of a magnetic fluid for the change in electromagnetic force is discussed and carried out theoretically and experimentally on the basis of Rosensweig Ferrohydrodynamic Bernoulli Equation. Objective of this study explicates free surface motion by electromagnetic force and planes to designed controller. To control free surface of magnetic fluid, it embody designed two-dimensional free surface form of magnetic fluid. By using this characteristics, they applied to oscillator for surface control, flow control, boundary layer control. Strength of magnetic field and height of free surface of magnetic fluid measure as a hall-effect sensor. As performing height control of magnetic fluid, the result will be presented possibility of free surface deformation control.

  • PDF

Magnetic and Electrical Properties of the Spin Valve Structures with Amorphous CoNbZr

  • Cho, Hae-Seok
    • Journal of Magnetics
    • /
    • v.2 no.3
    • /
    • pp.96-100
    • /
    • 1997
  • A spin valve structure of NiO(40 nm)/Co(2 nm)/Cu(2.6 nm)/Co(x nm)/Ta(5 nm) has been investigated for the application of magnetic random access memory (MRAM). The spin valve structure exhibited very large difference in the coercivities between pinned and free layers, a relatively high GMR ratio, and a low free layer coercivity. The spin valves were prepared by sputtering and were characterized by dc 4-point probe, and VSM. The spin valves with combined free layer exhibited a maximun GMR ratio of 10.4% with a free layer coercivity of about 82 Oe. The spin valves with a single 10 nm thick a-CoNbZr free layer exhibited a GMR ratio of about 4.3% with a free layer coercivity of about 12 Oe. The GMR ratio of the spin valves increased by addition of Co between Cu and a-CoNbZr. It has been confirmed that the coercivity of free layer can be decreased by increasing the thickness of a-CoNbZr. It has been confirmed that the coercivity of free layer can be decreased by increasing the thickness of a-CoNbZr layer without losing the GMR ratio substantially, which was mainly due to high resistivity of the amorphous "layers".

  • PDF

Ferromagnetic Resonance of Magnetic Tunnel Junctions with an Exchange Biased Synthetic Ferrimagnetic Reference Layer (교환 바이어스 인위적 준강자성 기준층을 포함한 자기 터널 접합의 강자성 공명)

  • Yoon, Jung-Bum;You, Chun-Yeol;Jung, Myung-Hwa
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.4
    • /
    • pp.121-126
    • /
    • 2011
  • Spin dynamics of magnetic tunnel junctions with free and fixed reference layers is investigated by ferromagnetic resonance micromagnetic simulations. First, in magnetic tunnel junctions with an exchange biased synthetic ferrimagnetic reference layer, a magnetization direction of each layer and the tunneling magnetoresistance are calculated for a DC magnetic field. To investigate the spin exciting modes in magnetic tunnel junctions, we simulate the ferromagnetic resonance frequency spectra with small RF magnetic fields. Exciting modes of the tunneling magnetoresistance calculated by an included angle between free and reference layers is interpreted from those of each layer. Spin exciting modes are different according to a signs of the DC magnetic field. In a negative magnetic field, FMR frequency spectra of free and reference layers are well elucidated by the modified Kittel's equation. However, in a positive magnetic field, there is no simple analytic solution related to FMR frequency spectra due to the coupled modes. Since ferromagnetic layers in magnetic tunnel junctions are interactive each other, careful considerations of the reference and fixed layer as well as the free layer are required for understanding on the spin dynamics of magnetic tunnel junctions with an exchange biased synthetic ferrimagnetic reference layer.

A Study on the Two-dimensional Formation Control of Free Surface of Magnetic Fluid by Electromagnetic Force (전자기력에 의한 자성유체의 2차원 자유표면 형상 제어에 관한 연구)

  • Bae Hyung-Sub;Yang Taek-Joo;Lee Yuk-Hyung;Joo Dong-Woo;Park Myeong-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.29-37
    • /
    • 2005
  • In this study, the control of the free surface deformation of a magnetic fluid for the change in electromagnetic force is discussed. The free surface of magnetic fluid is formed by the balance of surface force, gravity, pressure difference, magnetic normal pressure and magnetic body force. Magnetic fluid in characteristics of fluid adjusted to the opposite direction of the gravity direction. Thus, the device of a magnetic fluid proposed the complete zero-leakage sealing, oscillator for surface control, boundary layer control, MHD, flow control, flow using magnetic levitation system and surface actuator. This study show the deformation of surface rise due to the intensity of the magnetic field and possibility of two-dimensional control of magnetic fluid through the feedback data of hall sensor.

Soft Magnetic Property Depending on thickness of Free Layer in CoFe/Cu/CoFe/IrMn Spin Valve Film (CoFe/Cu/CoFe/IrMn 스핀밸브 박막의 자유층 두께 감소에 따른 연자성 자기저항 특성 연구)

  • Choi, Jong-Gu;Go, In-Suk;Gong, Yu-Mi;Kim, Min-Ho;Park, Young-Suk;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.2
    • /
    • pp.52-56
    • /
    • 2009
  • Interlayer coupling field, coercivity, magnetoresitance ratio, and magnetic sensitivity depending on the thickness of free CoFe layer for the CoFe/Cu/CoFe/IrMn multilayer are investigated. In case of CoFe layer of $30\;{\AA}$ thickness for the CoFe(t)/Cu($25\;{\AA}$)/CoFe($60\;{\AA}$)/IrMn($80\;{\AA}$) multilayer with ferromagnet/non-magnet/ferromagnet structure induced by IrMn layer, the lowest coercivity and the highest magnetic sensitivity, which is contained soft magnetic property, are observed. On the other side, in case of CoFe layer of $90\;{\AA}$ thickness, there are the highest coercivity and the lowest magnetic sensitivity. The fabricated CoFe($30\;{\AA}$)/Cu($25\;{\AA}$)/CoFe($60\;{\AA}$)]/IrMn($80\;{\AA}$) spin valve device with $2{\times}8{\mu}m^2$ patterning size are measured by two probe method, which is selected the sensing current as the longitudinal direction and the easy axis as the transversal direction. The measuring magntoresistance ratio and magnetic sensitivity of GMR-SV device having the soft magnetic property are 3.0% and 0.3%/Oe, respectively.

Anatomy of a flare-producing current layer dynamically formed in a coronal magnetic structure

  • Magara, Tetsuya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.41.3-42
    • /
    • 2016
  • No matter how intense magnetic flux it contains, a coronal magnetic structure has little free magnetic energy when a composing magnetic field is close to a potential field, or current-free field where no volume electric current flows. What kind of electric current system is developed is therefore a key to evaluating the activity of a coronal magnetic structure. Since the corona is a highly conductive medium, a coronal electric current tends to survive without being dissipated, so the free magnetic energy provided by a coronal electric current is normally hard to release in the corona. This work aims at clarifying how a coronal electric current system is structurally developed into a system responsible for producing a flare. Toward this end, we perform diffusive MHD simulations for the emergence of a magnetic flux tube with different twist applied to it, and go through the process of structuring a coronal electric current in a twisted flux tube emerging to form a coronal magnetic structure. Interestingly, when a strongly twisted flux tube emerges, there spontaneously forms a structure inside the flux tube, where a coronal electric current changes flow pattern from field-aligned dominant to cross-field dominant. We demonstrate that this structure plays a key role in releasing free magnetic energy via rapid dissipation of a coronal electric current, thereby producing a flare.

  • PDF

Magnetoresistance of IrMn-Based Spin Filter Specular Spin Valves (IrMn 스핀필터 스페큘라 스핀밸브의 자기저항 특성)

  • Hwang, J.Y.;Rhee, J.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.6
    • /
    • pp.236-239
    • /
    • 2004
  • We studied the specular spin valve (SSV) having the spin filter layer (SFL) in contact with the ultrathin free layer composed of Ta3/NiFe2/IrMn7/CoFel/(NOLl)/CoFe2/Cu1.8/CoFe( $t_{F}$)/Cu( $t_{SF}$ )/(NOL2)/Ta3.5 (in nm) by the magnetron sputtering system. For this antiferromagnetic I $r_{22}$M $n_{78}$-pinned spin filter specular spin valve (SFSSV) films, an optimal magnetoresistance (MR) ratio of 11.9% was obtained when both the free layer thickness ( $t_{F}$) and the SFL thickness ( $t_{SF}$ ) were 1.5 nm, and the MR ratio higher than 11% was maintained even when the $t_{F}$ was reduced to 1.0 nm. It was due to increase of specular electron by the nano-oxide layer (NOL) and of current shunting through the SFL. Moreover, the interlayer coupling field ( $H_{int}$) between free layer and pinned layer could be explained by considering the RKKY and magnetostatic coupling. The coercivity of the free layer ( $H_{cf}$ ) was significantly reduced as compared to the traditional spin valve (TSV), and was remained as low as 4 Oe when the $t_{F}$ varied from 1 nm to 4 urn. It was found that the SFL made it possible to reduce the free layer thickness and enhance the MR ratio without degrading the soft magnetic property of the free layer.

Computer Simulation of Switching Characteristics and Magnetization Flop in Magnetic Tunnel Junctions Exchange Biased by Synthetic Antiferromagnets

  • Lim, S.H.;Uhm, Y.R.
    • Journal of Magnetics
    • /
    • v.6 no.4
    • /
    • pp.132-141
    • /
    • 2001
  • The switching characteristics and the magnetization-flop behavior in magnetic tunnel junctions exchange biased by synthetic antiferromagnets (SyAFs) are investigated by using a computer simulations based on a single-domain multilayer model. The bias field acting on the free layer is found to be sensitive to the thickness of neighboring layers, and the thickness dependence of the bias field is greater at smaller cell dimensions due to larger magnetostatic interactions. The resistance to magnetization flop increases with decreasing cell size due to increased shape anisotropy. When the cell dimensions are small and the synthetic antiferromagnet is weakly, or not pinned, the magnetization directions of the two layers sandwiching the insulating layer are aligned antiparallel due to a strong magnetostatic interaction, resulting in an abnormal magneto resistance (MR) change from the high-MR state to zero, irrespective of the direction of the free-layer switching. The threshold field for magnetization-flop is found to increase linearly with increasing antiferromagnetic exchange coupling in the synthetic antiferromagnet. Irrespective of the magnetic parameters and cell sizes, magnetization flop does not exist near zero applied field, indicating that magnetization flop is driven by the Zeeman energy.

  • PDF