• Title/Summary/Keyword: free edge effects

Search Result 69, Processing Time 0.026 seconds

Failure analysis of laminates by implementation of continuum damage mechanics in layer-wise finite element theory

  • Mohammadi, B.;Hosseini-Toudeshky, H.;Sadr-Lahidjani, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.657-674
    • /
    • 2009
  • In this paper a 3-D continuum damage mechanics formulation for composite laminates and its implementation into a finite element model that is based on the layer-wise laminate plate theory are described. In the damage formulation, each composite ply is treated as a homogeneous orthotropic material exhibiting orthotropic damage in the form of distributed microscopic cracks that are normal to the three principal material directions. The progressive damage of different angle ply composite laminates under quasi-static loading that exhibit the free edge effects are investigated. The effects of various numerical modeling parameters on the progressive damage response are investigated. It will be shown that the dominant damage mechanism in the lay-ups of [+30/-30]s and [+45/-45]s is matrix cracking. However, the lay-up of [+15/-15] may be delaminated in the vicinity of the edges and at $+{\theta}/-{\theta}$ layers interfaces.

A Study on the Natural Frequencies of the Sound Emitted by Thin Conical Shell (圓통形셸 의 音響調節 에 관한 實驗的 硏究)

  • 염영하;곽재경;정석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.4
    • /
    • pp.353-360
    • /
    • 1982
  • The determination of the natural frequencies and mode shapes for thin conical shell is an important step not only in the investigation of the dynamic response of the composite structures such as missile cone, mose firings, but also in the analysis of the acoustic behavior of bells. A Rayleigh-Ritz procedure was used to determine the natural frequencies for a certain class of mode shapes of a thin conical shell built in on the edge with the smaller radius and free on the other edge. Both bending and extensional energy are included in the analysis. This paper described the experiments on the two natural frequencies which are present in association with two preferential modal directions, as a result of imperfection of the thin conical shell. Experimental work was conducted on two different bronze conical shells. One of these was specially designed to the effects of the adding distributed mass to the end of the conical shell. The other shells were identical in all dimensions except that of the thickness to the end of the conical shell. In this paper, the effect of a adding mass to a conical shell was investigated. Experimental result was that the magnitude of the natural frequency rate and the increase of depth of beat frequency depend upon the location of adding lumped mass on the surface of the conical shell.

Return Vane Installed in Multistage Centrifugal Pump

  • Miyano, Masafumi;Kanemoto, Toshiaki;Kawashima, Daisuke;Wada, Akihiro;Hara, Takashi;Sakoda, Kazuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.57-63
    • /
    • 2008
  • To optimize the stationary components in the multistage centrifugal pump, the effects of the return vane profile on the performances of the multistage centrifugal pump were investigated experimentally, taking account of the inlet flow conditions for the next stage impeller. The return vane, whose trailing edge is set at the outer wall position of the annular channel downstream of the vane and which discharges the swirl-less flow, gives better pump performances. By equipping such return vane with the swirl stop set from the trailing edge to the main shaft position, the unstable head characteristics can be also suppressed successfully at the lower discharge. Taking the pump performances and the flow conditions into account, the impeller blade was modified so as to get the shock-free condition where the incidence angle is zero at the inlet.

Dynamic instability analysis of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading

  • Patel, S.N.;Datta, P.K.;Sheikh, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.4
    • /
    • pp.483-510
    • /
    • 2006
  • The dynamic instability characteristics of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading are investigated in this paper. The eight-noded isoparametric degenerated shell element and a compatible three-noded curved beam element are used to model the shell panels and the stiffeners respectively. As the usual formulation of degenerated beam element is found to overestimate the torsional rigidity, an attempt has been made to reformulate it in an efficient manner. Moreover the new formulation for the beam element requires five degrees of freedom per node as that of shell element. The method of Hill's infinite determinant is applied to analyze the dynamic instability regions. Numerical results are presented to demonstrate the effects of various parameters like shell geometry, lamination scheme, stiffening scheme, static and dynamic load factors and boundary conditions, on the dynamic instability behaviour of laminated composite stiffened panels subjected to in-plane harmonic loads along the boundaries. The results of free vibration and buckling of the laminated composite stiffened curved panels are also presented.

Large Eddy Simulation of the flow around a finite-length square cylinder with free-end slot suction

  • Wang, Hanfeng;Zeng, Lingwei;Alam, Md. Mahbub;Guo, Wei
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.533-546
    • /
    • 2020
  • Large Eddy Simulation (LES) is used to study the effects of steady slot suction on the aerodynamic forces of and flow around a wall-mounted finite-length square cylinder. The aspect ratio H/d of the tested cylinder is 5, where H and d are the cylinder height and width, respectively. The Reynolds number based on free-stream oncoming flow velocity U and d is 2.78×104. The suction slot locates near the leading edge of the free end, with a width of 0.025d and a length of 0.9d. The suction coefficient Q (= Us/U) is varied as Q = 0, 1 and 3, where Us is the velocity at the entrance of the suction slot. It is found that the free-end steady slot suction can effectively suppress the aerodynamic forces of the model. The maximum reduction of aerodynamic forces occurs at Q = 1, with the time-mean drag, fluctuating drag, and fluctuating lift reduced by 3.75%, 19.08%, 40.91%, respectively. For Q = 3, all aerodynamic forces are still smaller than those for Q = 0 (uncontrolled case), but obviously higher than those for Q = 1. The involved control mechanism is successfully revealed, based on the comparison of the flow around cylinder free end and the near wake for the three tested Q values.

Free vibration and buckling analysis of elastically restrained FG-CNTRC sandwich annular nanoplates

  • Kolahdouzan, Farzad;Mosayyebi, Mohammad;Ghasemi, Faramarz Ashenai;Kolahchi, Reza;Panah, Seyed Rouhollah Mousavi
    • Advances in nano research
    • /
    • v.9 no.4
    • /
    • pp.237-250
    • /
    • 2020
  • An accurate plate theory for assessing sandwich structures is of interest in order to provide precise results. Hence, this paper develops Layer-Wise (LW) theory for reaching precise results in terms of buckling and vibration behavior of Functionally Graded Carbon Nanotube-Reinforced Composite (FG-CNTRC) annular nanoplates. Furthermore, for simulating the structure much more realistic, its edges are elastically restrained against in-plane and transverse displacement. The nano structure is integrated with piezoelectric layers. Four distributions of Single-Walled Carbon Nanotubes (SWCNTs) along the thickness direction of the core layer are investigated. The Differential Quadrature Method (DQM) is utilized to solve the motion equations of nano structure subjected to the electric field. The influence of various parameters is depicted on both critical buckling load and frequency of the structure. The accuracy of solution procedure is demonstrated by comparing results with classical edge conditions. The results ascertain that the effects of different distributions of CNTs and their volume fraction are significant on the behavior of the system. Furthermore, the amount of in-plane and transverse spring coefficients plays an important role in the buckling and vibration behavior of the nano-structure and optimization of nano-structure design.

Experimental and Numerical Study on the Effects of Bow Deck Shape on the Green Water (선수갑판형상이 갑판침입수에 미치는 영향에 관한 실험 및 수치적 연구)

  • Jeong, Kwang-Leol;Lee, Young-Gill;Ha, Yoon-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.273-281
    • /
    • 2013
  • In this paper, the effects of bow deck shape on the green water are studied by numerical and experimental method. Varying the deck shapes to triangular, elliptic and circular, the thickness and advancing velocity of green water leading edge are compared using numerical method. Also the motion, the pressure on the vertical wall and the height on the deck of green water are compared among the three bow deck shapes in the heave and pitch motion free condition by experimental method. To remove the effects of the difference of motions among the deck shapes, numerical simulations are performed varying the deck shape with the same motion. In the same motion condition, smallest impulsive pressure occurred in the condition of elliptic deck shape.

Effects of 3D Topography on Magnetotelluric Responses (MT 탐사의 3차원 지형효과)

  • Nam, Myung-Jin;Kim, Hee-Joon;Song, Yoon-Ho;Lee, Tae-Jong;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.275-284
    • /
    • 2007
  • For precise interpretation of magnetotelluric (MT) data distorted by irregular surface terrain, topography effects are investigated by computing apparent resistivities, phases, tippers and induction vectors for a three-dimensional (3D) hill-and-valley model. To compute MT responses for the 3D surface topography model, we use a 3D MT modeling algorithm based on an edge finite-element method which is free from vector parasites. Distortions on the apparent resistivity and phase are mainly caused by distorted currents that flow along surface topography. The distribution of tipper amplitudes over both hill and valley are the same, while the tipper points toward the center of hill and the base of the valley. The real part of induction vector also points in the same direction as that of tipper, while the imaginary part in the opposite direction.

Experimental study on the effect of flat-plate wake on mass transfer about a cylinder in crossflow (평판 후류가 원통 표면의 물질전달에 미치는 영향에 대한 실험적 연구)

  • 맹두진;김형수;이준식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2779-2786
    • /
    • 1994
  • This study presents an experimental investigation of the effect of the wake on mass transfer about a circular cylinder in crossflow. The flat-plate wake was generated by merging two mirror images of turbulent boundary layers that were well developed along the both sides of flat plate with a sharp trailing edge. The velocity field was measured by a hot-wire system and the mass transfer rate by a naphthalene sublimation method. The mixing and developing stages of the wake were addressed to identify flow conditions. The mass transfer effects of different developing stages of the wake was discussed in detail. It is noted that a local maximum appears not at the front stagnation point but at a point a little downstream when the cylinder is located in the nearwake region and much more elevated mass transfer rate is obtained compared to effect of free-stream turbulence.

Laminar-Turbulent Transition Research and Control in Near-wall Flow

  • Boiko A.V.;Chun H.H.
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.4
    • /
    • pp.10-16
    • /
    • 2004
  • A response of a swept wing boundary layer to a single free-stream stationary axial vortex of a limited spanwise extent is considered as an example of typical problems that one can find in laminar-turbulent transition research and control. The response is dominated by streamwise velocity perturbations that grow quasi-exponentially downstream. It is shown that the formation of the boundary layer disturbance occurs for the most part close to the leading edge. The disturbance represents itself a wave packet consisted of the waves with characteristics specific for cross-flow instability. However, an admixture of growing disturbances whose origin can be attributed to transient effects and to a distributed receptivity mechanism is also identified.