• Title/Summary/Keyword: framed tube

Search Result 29, Processing Time 0.025 seconds

An Efficient Analysis of Framed-Tube Structures (고층 튜브 구조물의 효율적 해석)

  • 이동근;김남희
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.133-138
    • /
    • 1992
  • The three dimensional analysis of Framed-Tube structures is neither easy nor efficient because of longer computational time, large memory requirement, tedious input preparation and bulky output. An efficient analysis model for framed-tube structure is proposed in this study. The proposed model can save the computational effort by using the assumption of the rigid floor diaphragm effect and matrix condensation technique. Moreover, it is develpoed by assembling two dimensional frames using the link degrees of freedom which are temporary used to satisfy the vertical displacement compatibility at the corners of a framed-tube. The accuracy and the efficiency of this analytical model is established by comparing with the results using the computer code SAPIV which is based on the three dimensional finite element model.

  • PDF

Continuum Beam Analogy for Analysis of Framed Tube Structures with Multiple Internal Tubes (연속 보 해석 기법에 의한 내부튜브를 가진 골조 튜브 구조물의 해석)

  • 이강건
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.215-221
    • /
    • 2000
  • A simple numerical modeling technique is proposed for the analysis of framed tube structures with multiple internal tubes. The structures are analysed using a continuum approach in which each tube is individually modelled by a tube beam that accounts for the flexural and shear deformations, as well as the shear lag effects. By simplifying assumptions regarding the form of strain distributions in external and internal tubes, the structural behaviours is reduced to the solution of a single second order linear differential equation. The numerical analysis uses the variational approach on the basis of the minimum potential energy priniciple. Three framed-tube sructures with single, two and three internal tubes are analysed to verify the applicability and reliability of the proposed method.

  • PDF

Optimization of lateral resisting system of framed tubes combined with outrigger and belt truss

  • Mohammadnejad, Mehrdad;Kazemi, Hasan Haji
    • Advances in Computational Design
    • /
    • v.7 no.1
    • /
    • pp.19-35
    • /
    • 2022
  • In this paper, the optimum location of the belt truss-outrigger for a combined system of framed tube, shear core and outrigger-belt truss is calculated. The optimum location is determined by maximization of the first natural frequency. The framed tube is modeled using a non-prismatic cantilever beam with hollow box cross section. The governing differential equation is solved using the weak form integral equations and the natural frequencies of the structure are calculated. The graphs are introduced for quick calculation of the first natural frequency. The location of the belt truss-outrigger that maximizes the first natural frequency of the structure is introduced as an optimum location. The structure is modeled using SAP-2000 finite elements software. In the modelling, the location of the belt truss-outrigger is changed along the height of the structure. With various locations of the outrigger, the lateral deflection of the all stories and axial force in the columns of the outer tube are calculated. The analysis is repeated by locating the outrigger-belt truss at the optimum location. The analysis results are compared and effect of the optimum location on the lateral deflection and the shear lag phenomena are investigated.

Additional Stresses in Flange Frame of Tube Structures under Lateral Loading (수평하중을 받는 튜브 구조물의 플랜지에 작용하는 부가 응력)

  • 이강건;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.317-322
    • /
    • 2001
  • A mathematical modelling technique is proposed for estimating the additional bending stresses of tube(s)-in-tube structures due to tube-tube interaction, which has a significant effects on the shear-lag phenomenon. The proposed method simulates the framed-tube structures with multiple internal tubes as equivalent multiple tubes, each composed of four equivalent orthotropic plate panels. Hence, the tube(s)-in-tube structure can be analysed by using an analogy approach where each tube is individually modelled by a continuous beam that can account for the flexural and shear deformations as well as the shear-lag effects. The numerical analysis is applicable for the structural analysis of framed-tube structures with single and multiple internal tubes, as well as those without internal tubes. The shear-lag phenomenon of such structures is studied with additiona] bending stresses and shear-lag reversal points.

  • PDF

Comparison of shear lag in structural steel building with framed tube and braced tube

  • Mazinani, Iman;Jumaat, Mohd Zamin;Ismail, Z.;Chao, Ong Zhi
    • Structural Engineering and Mechanics
    • /
    • v.49 no.3
    • /
    • pp.297-309
    • /
    • 2014
  • Under lateral loads Framed Tube (FT) system exhibits reduction of cantilever efficiency due to the effect of shear lag. Braced Tube (BT) represents a valuable solution to overcome shear lag problems by stiffening the exterior frame with diagonal braced members. This study investigates the effect of shear lag on BT and FT under wind load. Shear lag and top-level displacement results are compared with previous findings by researchers on FT and BT systems. The investigation of the effect of various configurations in BT on the reduction the shear lag is another objective of this study. The efficiency of each structure is evaluated using the linear response spectrum analysis to obtain shear lag. STADD Pro software is used to run the dynamic analysis of the models. Results show there is relatively less shear lag in all the BT configurations compared to the FT structural system. Moreover, the comparison of the obtained result with those derived by previous studies shows that shear lag is not proportional to lateral displacement. With respect to results, optimum BT configuration in term of lower shear lag caused by lateral loads is presented.

Orthotropic Beam Analogy for Analysis of Shear Stresses in Framed-Tube Structures (구형등가보 원리에 의한 튜브 구조물의 전단응력 해석)

  • 이강건;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.393-400
    • /
    • 2001
  • A simple numerical modelling technique is proposed for estimating the shear stress distribution in beams of framed tube structures with multiple internal tubes. The structures are analysed using a continuum approach in which each tube is individually modelled by a tube beam that accounts for the flexural and shear deformations, as well as the shear lag effects. The method idealises the discrete tubes-in-tube structures as an assemblage of equivalent multiple beams, each composed of orthotropic plate panels. The numerical analysis of shear stress is based on the elastic theory in conjunction with the minimum potential energy principle. By simplifying assumptions regarding the form of strain distributions in external and internal tubes, the shear stress distributions are expressed in terms of a series of linear functions of the second moments of area of the structures and the corresponding geometric and material properties, as well as the applied loads. The simplicity and accuracy of the proposed method are demonstrated through the solutions of three numerical examples.

  • PDF

Shear Lag in Framed Tube Structures with Multiple Internal Tubes (복수의 내부 튜브를 가진 골조 튜브 구조물의 Shear Lag)

  • 이강건;이리형
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.351-360
    • /
    • 2000
  • A simple numerical modelling technique is proposed for estimating the shear lag effects of framed-tube system with multiple internal tubes. The tube(s)-in-tube structure is analysed by using an analogy approach in which each tube is individually modelled by a beam that can accounts for the flexural and shear deformations, as well as the shear lag effects. The numerical analysis is based on the minimum potential energy principle in conjunction with the variational approach. The shear lag phenomenon of such structures is studied with additional bending stresses. Structural parameters governing the shear lag behaviour in tube(s)-in-tube structures are also investigated through thirty-three numerical examples.

  • PDF

A simple mathematical model for static analysis of tall buildings with two outrigger-belt truss systems

  • Rahgozar, Reza;Ahmadi, Ali Reza;Hosseini, Omid;Malekinejad, Mohsen
    • Structural Engineering and Mechanics
    • /
    • v.40 no.1
    • /
    • pp.65-84
    • /
    • 2011
  • In this paper a simple mathematical model for approximate static analysis of combined system of framed tube, shear core and two outrigger-belt truss structures subjected to lateral loads is presented. In the proposed methodology, framed tube is modeled as a cantilevered beam with a box section and interaction between shear core and outrigger-belt truss system with framed tube is modeled using torsional springs placed at location of outrigger-belt truss; these torsional springs act in a direction opposite to rotation generated by lateral loads. The effect of shear lag on axial deformation in flange is quadratic and in web it is a cubic function of geometry. Here the total energy of the combined system is minimized with respect to lateral deflection and rotation in plane section. Solution of the resulting equilibrium equations yields the unknown coefficients of shear lag along with the stress and displacement distributions. The results of a numerical example, 50 storey building subjected to three different types of lateral loading obtained from SAP2000 are compared to those of the proposed method and the differences are found to be reasonable. The proposed method can be used during the preliminary design stages of a tall building and can provide a better understanding of the effects of various parameters on the overall structural behavior.

Cyclic loading behavior of high-strength steel framed-tube structures with replaceable shear links constructed using Q355 structural steel

  • Guo, Yan;Lian, Ming;Zhang, Hao;Cheng, Qianqian
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.827-841
    • /
    • 2022
  • The rotation capacities of the plastic hinges located at beam-ends are significantly reduced in traditional steel framed-tube structures (SFTSs) because of the small span-to-depth ratios of the deep beams, leading to the low ductility and energy dissipation capacities of the SFTSs. High-strength steel framed-tube structures with replaceable shear links (HSSFTS-RSLs) are proposed to address this issue. A replaceable shear link is located at the mid-span of a deep spandrel beam to act as a ductile fuse to dissipate the seismic energy in HSSFTS-RSLs. A 2/3-scaled HSSFTS-RSL specimen with a shear link fabricated of high-strength low-alloy Q355 structural steel was created, and a cyclic loading test was performed to study the hysteresis behaviors of this specimen. The test results were compared to the specimens with soft steel shear links in previous studies to investigate the feasibility of using high-strength low-alloy steel for shear links in HSSFTS-RSLs. The effects of link web stiffener spaces on the cyclic performance of the HSSFTS-RSLs with Q355 steel shear links were investigated based on the nonlinear numerical analysis. The test results indicate that the specimen with a Q355 steel shear link exhibited a reliable and stable seismic performance. If the maximum interstory drift of HSSFTS-RSL is designed lower than 2% under earthquakes, the HSSFTS-RSLs with Q355 steel shear links can have similar seismic performance to the structures with soft steel shear links, even though these shear links have similar shear and flexural strength. For the Q355 steel shear links with web height-to-thickness ratios higher than 30.7 in HSSFTS-RSLs, it is suggested that the maximum intermediate web stiffener space is decreased by 15% from the allowable space for the shear link in AISC341-16 due to the analytical results.

A new and simple analytical approach to determining the natural frequencies of framed tube structures

  • Mohammadnejad, Mehrdad;Kazemi, Hasan Haji
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.111-120
    • /
    • 2018
  • This paper presents a new and simple solution for determining the natural frequencies of framed tube combined with shear-walls and tube-in-tube systems. The novelty of the presented approach is based on the bending moment function approximation instead of the mode shape function approximation. This novelty makes the presented solution very simpler and very shorter in the mathematical calculations process. The shear stiffness, flexural stiffness and mass per unit length of the structure are variable along the height. The effect of the structure weight on its natural frequencies is considered using a variable axial force. The effects of shear lag phenomena has been investigated on the natural frequencies of the structure. The whole structure is modeled by an equivalent non-prismatic shear-flexural cantilever beam under variable axial forces. The governing differential equation of motion is converted into a system of linear algebraic equations and the natural frequencies are calculated by determining a non-trivial solution for the system of equations. The accuracy of the proposed method is verified through several numerical examples and the results are compared with the literature.