• Title/Summary/Keyword: frame material

Search Result 799, Processing Time 0.028 seconds

Structural Analysis of the Lower Frame in the Multi-aerial Platform (복합굴절차의 하부 프레임에 대한 구조해석)

  • Kang, Sung-Soo
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.3
    • /
    • pp.69-75
    • /
    • 2015
  • This research focuses on structural stability of the multi-aerial platform. In this study, we conduct structural analysis for the lower structures such as sub frame, out-trigger and chassis frame, by using a universal structural analysis program NASTRAN based on 3D CAD data, material properties, load conditions and boundary conditions. We confirm the position of local stress exceeding the yield strength, through structural analysis of 4 cases for load conditions. As the results, it is possible to relax stress concentration in a way such as changing the thickness, reinforcing the material of the lower frames.

A Study on the Performance Evaluation of Form Using the Aluminum Alloy Frame Reinforced Panel (Aluminum 합금재 Frame을 이용한 벽체거푸집공법의 성능평가에 관한 연구)

  • 안재철;오상균;강병희
    • Journal of the Korea Institute of Building Construction
    • /
    • v.1 no.1
    • /
    • pp.135-142
    • /
    • 2001
  • This study is for the investigation of form using the aluminum-compound metal frame(Aluminum frame reinforced panel : AFR panel) which is improved in the capacity in the wall-concrete structure in steal of using the existing form which has problems such as, excessive exposure of cement, the loss of labor when it is constructed or disjointed, and it's economical efficiency compared with that of EURO Form. AFR panel passes the KS F 8006 test, and as a result of field test, it's displacement is satisfied with Specification. And using AFR panel is more economical than that of EURO Form because saving labor cost which plays a major part in cost saving in formwork is more effective in retrenching total cost than increment of material cost.

  • PDF

A Study on the Lightweight Design of a Seat Frame in Automotive Vehicles (자동차 시트 프레임의 경량화 설계에 관한 연구)

  • 최금호
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.5
    • /
    • pp.83-89
    • /
    • 1999
  • A seat frame structure in automotive vehicles made of polymer matrix composite to achieve weight reduction at low cost was developed. In order to design and manufacture the actual product studies on material selection and structural analysis were performed. Structural analysis was performed with a finite element method. The analysis was done for several cases suggested in various safety regulations. Each results was utilized to modify the actual shape to obtain a lighter, safer and more stable design. The final design was used to produce a sample bottom plate of the seat structure with reinforced by X-shape frame. Substitution of the material resulted in a weight reduction effect with equivalent strength fatigue and impact characteristics.

  • PDF

A Study on Composite Materials Frame of Electric Vehicles using Impact Analysis (충돌해석을 이용한 전기자동차 복합소재 프레임 설계에 관한 연구)

  • Ahn, Tae-Kyeong;Lee, Young-Jin;Lee, Sang-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.75-80
    • /
    • 2020
  • In this study, we designed car frames for collision analysis using carbon fiber reinforced polymer (CFRP) as the lighter composite material. The impact conditions were 100 percent frontal impact, 40 percent frontal impact, and 90 degrees side impact. The impact analysis measured the maximum stress at velocities of 20km/h and 40km/h for each condition and evaluated the vulnerable points in the car frame. Additional supports have been designed both to improve the weak points in existing vehicle frames, and to be taken into account when new parts are assembled. Our impact analysis compared the results of maximum stress on the car frame with and without the support.

Investigation of Inter Fiber Cohesion in Yarns. I. Influence of Certain Spinning Parameters on the Cohesion in Cotton Yarns

  • Gokarneshan N.;Ghosh Anindya;Anbumani N.;Subramaniam V.
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.336-338
    • /
    • 2005
  • This paper investigates the influence of raw material and process parameters in spinning that affect the inter fiber cohesion in yams. An instrument has been developed for measuring the minimum twist of cohesion. With regard to the raw material parameters, the influence of different cotton fiber mixings for a given count of yarn is investigated. Also the effect of spinning to varying counts for a given cotton variety is studied. With regard to the process parameters, studies have been carried out to investigate the influence of noil extraction in comber, number of draw frame passages, draft pressure in ring frame and direction of twist. Cohesion improved with increase in the noil extraction percentage in the comber. Increase in the number of draw frame passages also improved the cohesion. Draft pressure in ring frame improved the fiber cohesion in yarn up to a pressure of $2.1kg/cm^2$. Direction of twist had no effect on the cohesion.

Evaluation of the Thermal Performance and Condensation Resistance of a Steel Frame Curtain Wall System (스틸 커튼월의 단열성능 및 결로방지성능 평가)

  • Kim, Sun Sook;Cho, Bong Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.51-57
    • /
    • 2013
  • Metal curtain wall systems are widely used in high-rise commercial and residential buildings. While aluminum is the most frequent used frame material, steel framing is also reemerging as a high-performance material in glazed curtain walls due to less thermal conductivity and design flexibility. The purpose of this study is to evaluate thermal performance of a steel frame curtain wall system by comparing with a aluminum frame curtain wall system. The thermal transmittance was measured according to KS 2278, and condensation resistance was calculated by the test results according to KS F 2295. The steel framing test specimen showed lower thermal transmittance and temperature descending factor compared to the aluminum framing test specimen.

Development and Durability Evaluation of a Bimaterial Composite Frame by Pultrusion Process (인발성형 공정을 통한 이종재료 복합소재 프레임 개발 및 내구성 평가)

  • Lee, Haksung;Kang, Shinjae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.145-151
    • /
    • 2014
  • Recently, the growing demand for weight reduction and improved structure durabilityfor commercial vehicles has led to active research into the development and application of suitablecomposite materials. This studysuggests abimaterial composite frame produced by apultrusion process to replace steel frames. We focused on the development of a composite frameconsisting of two types of materialsby mixing anorthotropic material with anisotropic material. The inside layer consisted of an aluminum pipe, and the outside layer was composed of a glass fiber pipe. To determine the strength and failure mechanisms of the composite material, tensile tests, shear tests, and three-point bending tests were conducted, followed by fatigue tests. After static testing, the fatigue tests were conducted at a load frequency of 5 Hz, a stress ratio (R) of 0.1, and an endurance limit of $10^6$ for the S-N curve. The resultsshowed that the failure modes were related to both the core design and the laminating conditions.

A Study on the Reduction Characteristics of Floor Impact Sound Insulation Due to the Ceiling Frame Structures in Apartment Houses (공동주택의 천장틀구조 변화에 따른 바닥충격음 차음특성 연구)

  • 정환욱;기노갑;송민정;김선우
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.8
    • /
    • pp.573-580
    • /
    • 2002
  • Generally the ceiling frame of apartment house is made of wood. But the wood frame has several problems due to the natural properties such as distortion by shrink, low fire resistance and material loss in the construction field. And it has some defections in sound insulation performance. Therefore it is necessary to develop a new method that can be used as a ceiling frame. This study aims to analyze and to compare the sound insulation characteristics against the floor impact sound between wood ceiling frame and M-bar frame which is made of steel. The results of this study are like these. M-bar frame is more effective than wood ceiling frame in sound insulation. And sound absorbing or sound insulation materials which can be Put on gypsum board are helpful to improve floor impact sound insulation performance.

Calculating Cp of Position Tolerance when MMC Applied at Datum and Position Tolerance (데이텀과 위치공차에 최대실체조건이 적용되었을 경우의 위치공차의 Cp)

  • Kim, Jun-Ho;Chang, Sung-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.3
    • /
    • pp.1-6
    • /
    • 2017
  • Process capability is well known in quality control literatures. Process capability refers to the uniformity of the process. Obviously, the variability in the process is a measure of the uniformity of output. It is customary to take the 6-sigma spread in the distribution of the product quality characteristic as a measure of process capability. However there is no reference of process capability when maximum material condition is applied to datum and position tolerance in GD&T (Geometric Dimensioning and Tolerancing). If there is no material condition in datum and position tolerance, process capability can be calculated as usual. If there is a material condition in a feature control frame, bonus tolerance is permissible. Bonus tolerance is an additional tolerance for a geometric control. Whenever a geometric tolerance is applied to a feature of size, and it contains an maximum material condition (or least material condition) modifier in the tolerance portion of the feature control frame, a bonus tolerance is permissible. When the maximum material condition modifier is used in the tolerance portion of the feature control frame, it means that the stated tolerance applies when the feature of size is at its maximum material condition. When actual mating size of the feature of size departs from maximum material condition (towards least material condition), an increase in the stated tolerance-equal to the amount of the departure-is permitted. This increase, or extra tolerance, is called the bonus tolerance. Another type of bonus tolerance is datum shift. Datum shift is similar to bonus tolerance. Like bonus tolerance, datum shift is an additional tolerance that is available under certain conditions. Therefore we try to propose how to calculate process capability index of position tolerance when maximum material condition is applied to datum and position tolerance.

On the Fracture of Polar Class Vessel Structures Subjected to Lateral Impact Loads (횡충격하중을 받는 빙해선박 구조물의 파단에 관한 연구)

  • Min, Dug-Ki;Cho, Sang-Rai
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.4
    • /
    • pp.281-286
    • /
    • 2012
  • Single frame structures with notches were fractured by applying drop impact loadings at room temperature and low temperature. Johnson-Cook shear failure model has been employed to simulate the fractured single frame structures. Through several numerical analyses, material constants for Johnson-Cook shear failure model have been found producing the cracks resulted from experiments. Fracture strain-stress triaxiality curves at both room temperature and low temperature are presented based on the extracted material constants. It is expected that the fracture strain-stress triaxiality curves can offer objective fracture criteria for the assessment of structural fractures of polar class vessel structures fabricated from DH36 steels. The fracture experiments of single frame structures revealed that the structure on low temperature condition fractures at much lower strain than that on room temperature condition despite the same stress states at both temperatures. In conclusion, the material properties on low temperature condition are essential to estimate the fracture characteristics of steel structures operated in the Northern Sea Route.