• 제목/요약/키워드: frame material

검색결과 796건 처리시간 0.029초

펄스 와전류(Pulsed eddy current)를 이용한 도시철도차량의 Under Frame Side Sill 부식 평가 (Inspection of corrosion in under frame side sill for rolling stocks using pulsed eddy current testing)

  • 김웅지;송성진;김학준;정종덕;이찬우
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.1117-1124
    • /
    • 2009
  • Under frame side sill of rolling stock structure is designed for preventing corrosion in order to meet mechanical requirements. However during long operation time more than 20 years, there are corrosion in the under frame side sill caused by environmental effect, vibration and etc. So, detection and evaluation of the corrosion ill the under frame nondestructive is one of important issues to extend their life time. Most of nondestructive methods are not easy to apply for detecting corrosion in the under frame side sill, since the under frame side sill consist of there layered with different material (stainless steel - stainless steel - mild steel) and each layer is connected by spot weld and plug weld. Fortunately, pulsed eddy current method claimed that it can be measured not only thickness change but also corrosion under their insulation layers. So, in this study, we have investigated performance of pulsed eddy current testing method by measuring thickness variation of fabricate of mock-up specimens. The investigation results obtained from mock-up specimens and the corrosion evaluation results of the aged rolling stocks will be presented.

  • PDF

Parametric study of SMA helical spring braces for the seismic resistance of a frame structure

  • Ding, Jincheng;Huang, Bin;Lv, Hongwang;Wan, Hongxia
    • Smart Structures and Systems
    • /
    • 제25권3호
    • /
    • pp.311-322
    • /
    • 2020
  • This paper studies the influence of parameters of a novel SMA helical spring energy dissipation brace on the seismic resistance of a frame structure. The force-displacement relationship of the SMA springs is established mathematically based on a multilinear constitutive model of the SMA material. Four SMA helical springs are fabricated, and the force-displacement relationship curves of the SMA springs are obtained via tension tests. A numerical dynamic model of a two-floor frame with spring energy dissipation braces is constructed and evaluated via vibration table tests. Then, two spring parameters, namely, the ratio of the helical spring diameter to the wire diameter and the pre-stretch length, are selected to investigate their influences on the seismic responses of the frame structure. The simulation results demonstrate that the optimal ratio of the helical spring diameter to the wire diameter can be found to minimize the absolute acceleration and the relative displacement of the frame structure. Meanwhile, if the pre-stretch length is assigned a suitable value, excellent vibration reduction performance can be realized. Compared with the frame structure without braces, the frames with spring braces exhibit highly satisfactory seismic resistance performance under various earthquake waves. However, it is necessary to select an SMA spring with optimal parameters for realizing optimal vibration reduction performance.

열간자유단조와 링롤링공법을 이용한 풍력발전기용 도아프레임 개발 (A Door Frame for Wind Turbine Towers Using Open-Die Forging and Ring-Rolling Method)

  • 권용철;강종훈;김상식
    • 대한기계학회논문집A
    • /
    • 제39권7호
    • /
    • pp.721-727
    • /
    • 2015
  • 풍력 발전기용 기계부품은 주로 자유단조 공법을 통하여 제조된다. 본 연구는 풍력발전기용 타워부품인 도아프레임의 제조하기 위한 발전된 단조공법에 관한 연구이다. 개발된 단조공법의 장점은 원소재 회수율을 높임에 따라 원소재 투입량을 줄임으로 제조원가를 낮춘다. 기존의 단조공업은 유압프레스를 이용하여 단조작업이 이루어지며 최종제품과 단조품의 형상 차이로인하여 많은 부분이 가공으로 제거된다. 하지만 제안된 단조공법은 열간 자유단조와 링롤링공법을 통하여 원소재 회수율을 높이게 된다. 새로운 공법의 유효성은 링롤링 블랭크의 치수와 밀접한 관련이 있기 때문에 유한요소해석을 통하여 블랭크의 치수를 최적화 하였다. 유한요소해석을 통하여 얻은 단조품의 치수는 시제품 생산을 통하여 검증하였다.

컴퓨터 시뮬레이션(CAE)을 이용한 자동차용 AA6061 리어 서브-프레임 사이드멤버의 하이드로-포밍 공정 개발 (Hydro-forming Process Development of Automotive AA6061 Rear Sub-frame Side Member by Computer Aided Engineering (CAE))

  • 김기주;김재현;최병익
    • 한국자동차공학회논문집
    • /
    • 제18권5호
    • /
    • pp.45-49
    • /
    • 2010
  • The automotive industry has shown a growing interest in tube hydroforming during the past years. The advantages of hydroforming (less thinning, a more efficient manufacturing process, etc.) can, for instance, be combined with the high strength of extra high strength steels, which are usually less formable, to produce structural automotive components which exhibit lower weight and improved service performance. Design and production of tubular components require knowledge about tube material and forming behavior during hydroforming and how the hydroforming operation itself should be controlled. These issues are studied analytically in the present paper. In this study, the whole process of rear sub-frame parts development by tube hydroforming using AA6061 material is presented. At the part design stage, it requires feasibility study and process design aided by CAE (Computer Aided Engineering) to confirm hydroformability in details. Effects of parameters such as internal pressure, axial feeding and geometry shape in automotive rear sub-frame by hydroforming process were carefully investigated. Overall possibility of hydroformable rear sub-frame parts could be examined by cross sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending and hydroforming. In addition, all the components of prototyping tool are designed and interference with press is examined from the point of geometry and thinning.

Finite Element Modeling and Nonlinear Analysis for Seismic Assessment of Off-Diagonal Steel Braced RC Frame

  • Ramin, Keyvan;Fereidoonfar, Mitra
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권1호
    • /
    • pp.89-118
    • /
    • 2015
  • The geometric nonlinearity of off-diagonal bracing system (ODBS) could be a complementary system to covering and extending the nonlinearity of reinforced concrete material. Finite element modeling is performed for flexural frame, x-braced frame and the ODBS braced frame system at the initial phase. Then the different models are investigated along various analyses. According to the experimental results of flexural and x-braced frame, the verification is done. Analytical assessments are performed in according to three dimensional finite element modeling. Nonlinear static analysis is considered to obtain performance level and seismic behaviour, and then the response modification factors calculated from each model's pushover curve. In the next phase, the evaluation of cracks observed in the finite element models, especially for RC members of all three systems is performed. The finite element assessment is performed on engendered cracks in ODBS braced frame for various time steps. The nonlinear dynamic time history analysis accomplished in different stories models for three records of Elcentro, Naghan and Tabas earthquake accelerograms. Dynamic analysis is performed after scaling accelerogram on each type of flexural frame, x-braced frame and ODBS braced frame one by one. The base-point on RC frame is considered to investigate proportional displacement under each record. Hysteresis curves are assessed along continuing this study. The equivalent viscous damping for ODBS system is estimated in according to references. Results in each section show the ODBS system has an acceptable seismic behaviour and their conclusions have been converged when the ODBS system is utilized in reinforced concrete frame.

완주 송광사 소조사천왕상의 재질특성 및 제작기법 해석 (Interpretation of Making Techniques and Material Characteristics for Molding Clay of Four Guardian Statues in Wanju Songkwangsa Temple, Korea)

  • 한두루;이찬희;조영훈
    • 보존과학회지
    • /
    • 제28권4호
    • /
    • pp.353-366
    • /
    • 2012
  • 이 연구에서는 완주 송광사 소조사천왕상의 제작기법을 해석하였으며, 소조토의 산지를 추정하여 동일재료로 보존처리 및 복원할 수 있는 기초자료를 확보하였다. 사천왕상에 사용된 소조토는 층위별로 다양한 재질적 특성을 나타냈다. 원소조토로 추정되는 초벌층과 중벌층은 성인적으로 동일한 토양이 사용되었으며, 마감층은 약간의 차이를 보였으나 거의 유사한 토양으로 확인되었다. 그러나 보수층은 모든 분석결과에서 원소조토와 재질특성이 일치하지 않았다. 감마선 촬영 결과, 사천왕상의 제작은 심목과 부목을 강선과 'ㄷ'자 꺽쇠, 못, 새끼줄 등으로 연결하여 뼈대를 형성하고, 이 위에 소조토를 조성한 것으로 나타났다. 소조토의 산지해석 결과, 추정산지 일대 토양은 마감층에 사용된 토양과 동일기원으로 나타나 보존처리용 재료로 적합할 것으로 판단된다. 이 결과는 소조상의 제작기법 연구에 기여할 것으로 기대된다.

유럽 규격을 적용한 디젤동차 대차프레임의 정적 및 피로강도 평가 (Evaluation of static and fatigue strength applying European standard for the bogie frame of Diesel Multiple Unit)

  • 김우진;송시엽;박근수;박형순
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.801-808
    • /
    • 2007
  • Rotem Company has designed and manufactured bogie for Diesel Multiple Unit (DMU) according to the European standard UIC615-4, which si normally used for designing bogie frame. Because the countries located in Middle East do not have their own regulations for bogie design, most of running bogies in Middle East are designed by using European standard UIC615-4. UIC615-4 specifies the loads that bogie frame should withstand, indicates the way of material data to be used and the principles to be during verification by analysis and test. The bogie frame depends on the load conditions and magnitudes which are subjected to during service and characteristics of materials they are manufactured from. From the above reason, Rotem Company has performed Finite Element Analysis and load tests on the bogie frame according to UIC615-4. This research contains the results obtained by the analysis and the load tests. Also, this research verifies that the bogie frame has a static strength and fatigue strength. The analysis is carried out using I-DEAS 12 NX Series and specially designed test jigs and equipment are used for the load tests.

  • PDF

Conceptual configuration and seismic performance of high-rise steel braced frame

  • Qiao, Shengfang;Han, Xiaolei;Zhou, Kemin;Li, Weichen
    • Steel and Composite Structures
    • /
    • 제23권2호
    • /
    • pp.173-186
    • /
    • 2017
  • Conceptual configuration and seismic performance of high-rise steel frame-brace structure are studied. First, the topology optimization problem of minimum volume based on truss-like material model under earthquake action is presented, which is solved by full-stress method. Further, conceptual configurations of 20-storey and 40-storey steel frame-brace structure are formed. Next, the 40-storeystructure model is developed in Opensees. Two common configurations are utilized for comparison. Last, seismic performance of 40-storey structure is derived using nonlinear static analysis and nonlinear dynamic analysis. Results indicate that structural lateral stiffness and maximum roof displacement can be improved using brace. Meanwhile seismic damage can also be decreased. Moreover, frame-brace structure using topology optimization is most favorable to enhance lateral stiffness and mitigate seismic damage. Thus, topology optimization is an available way to form initial conceptual configuration in high-rise steel frame-brace structure.

고온가압에 의한 연어 frame 추출물의 제조조건 (Preparation Conditions of Extracts from Salmon Frame using an Autoclave)

  • 지승길;구재근;권재석;한병욱;김형준;허민수;김진수
    • 한국수산과학회지
    • /
    • 제42권4호
    • /
    • pp.307-315
    • /
    • 2009
  • This study was conducted to investigate optimal conditions for preparation of extracts from salmon frame using an autoclave. According to the results of various extraction conditions (extraction method, extraction time, volume and pH of extraction solution, and necessity of re-extracting), higher quality extracts could be prepared by adding salmon frame into 3 times (vol/wt) of water to raw material, and then autoclaving for 4 hrs before filtering extracts with cheese cloth. For efficient use as basic materials of liquid or powder Gomtang, however, fish odor of the extracts prepared under optimal condition should be improved.

전동차 구조체의 구조해석 연구 (Structure Analysis of Body Structure for Electrical Multiple Unit)

  • 윤성철;백광선;권성태;김명룡
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1335-1338
    • /
    • 2004
  • This paper describes the result of structure analysis of body structure. The purpose of the analysis is to evaluate an safety which body structure shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load and operating condition. Material of body structure applied an aluminum alloy. Body structure consist of side frame, under frame, roof frame, end frame. FEM analysis is based on 'Performance Test Standard for Electrical Multiple Unit, noticed by Ministry of Construction & Transportation, in 2000 ' and reference code is JIS E 7105. The analysis results have been very safety and stable for design load conditions.

  • PDF