• Title/Summary/Keyword: frame joints

Search Result 276, Processing Time 0.022 seconds

On the member reliability of wind force-resisting steel frames designed by EN and ASCE rules of load combinations

  • Kudzys, Antanas;Kudzys, Algirdas
    • Wind and Structures
    • /
    • v.12 no.5
    • /
    • pp.425-439
    • /
    • 2009
  • The expediency of revising universal rules for the combination of gravity and lateral actions of wind force-resisting steel structures recommended by the Standards EN 1990 and ASCE/SEI 7-05 is discussed. Extreme wind forces, gravity actions and their combinations for the limit state design of structures are considered. The effect of statistical uncertainties of extreme wind pressure and steel yield strength on the structural safety of beam-column joints of wind force-resisting multistory steel frames designed by the partial factor design (PFD) and the load and resistance factor design (LRFD) methods is demonstrated. The limit state criterion and the performance process of steel frame joints are presented and considered. Their long-term survival probability analysis is based on the unsophisticated method of transformed conditional probabilities. A numerical example illustrates some discrepancies in international design standards and the necessity to revise the rule of universal combinations of loads in wind and structural engineering.

Analytical Modeling Method of Beam-Column Joints for the Inelastic Analysis of R/C Structures (철근콘크리트 구조물의 비탄성해석을 위한 보-기둥 접합부의 해석모델링 기법)

  • 장극관;황정현;양승호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.287-295
    • /
    • 2001
  • The purpose of this paper to describe an analytical model that is capable of reproducing the hysteretic behavior of beam-column joints under cyclic loading and to suggest the variable of hysteretic model for the inelastic analysis of R/C frame structures to do this quasi-static analysis using IDARC program was performed for the beam-column joints. The effort to obtain the result of analysis similar to those of experiment was made by determining the value for hysteretic parameters representing stiffness degradation, strength deterioration and pinching effect. The accuracy and reliability of the proposed analytical model was demonstrated by comparison of load-displacement relation, maximum strength, stiffness degradation and energy dissipation.

  • PDF

Strut-and-Tie Models for Shear Strength of RC Beam-Column Joints Considering Deformation of Beam Plastic Hinge (보 소성힌지 변형을 고려한 RC보-기둥 접합부의 스트럿-타이 모델)

  • 이수곤;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.397-402
    • /
    • 2003
  • This paper presents strut-and-tie models for predicting shear strength of RC interior beam-column joints considering the plastic hinge rotation of adjacent beams. On seismic design of frame system, it is controlled beams to occur plastic hinges and to be ductile so as to dissipate earthquake energy efficiently. The plastic hinge deformation of beams is used as analysis parameter in terms of strain of beam tensile bars at column face. The shear strengths of beam-column joints are evaluated by combining direct strut mechanism with truss mechanism. It is assumed that the max force transferred by direct strut mechanism is based on the strength of cracked concrete element, and that by truss mechanism is based on bond capacity.

  • PDF

Shear Behavior of Wide Beam-Column Joints with Slab (슬래브가 있는 넓은 보-기둥 접합부의 전단거동)

  • 안종문;최종인;신성우;이범식;박성식;양지수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.157-162
    • /
    • 2003
  • An experimental investigation was conducted to study the behavior of high-strength RC wide beam-column joints with slab subjected to reversed cyclic loads under constant axial load. Six half scale interior wide beam-column assemblies representing a portion of a frame subjected to simulated seismic loading were tested, including three specimens without slab and three specimens with slab. The primary variables were compressive strength of concrete($f_ck$=285, 460kgf/$cm^2$), the ratio of the column-to-beam flexural capacity($M_r$=$\Sigma M_c / \Sigma M_b$ ; 0.77 -2.26), extended length of the column concrete($l_d$ ; 0, 12.5, 30cm), ratio of the column-to-beam width(b/H ; 1.54, 1.67). Test results are shown that (1) the behavior of specimen using high-strength concrete satisfied for required minimum ductile capacity according to increase the compressive strength, (2) the current design code and practice for interior joints(type 2) are apply to the wide beam-high strength concrete column.

  • PDF

Elasto-Plastic Analysis on Connections of Precast Large Panel Structures (프리캐스트 대헝판 구조물의 접합부에 관한 탄소성해석)

  • 권택진;박강근;권익노;조강표
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.27-34
    • /
    • 1993
  • Precast large panel structures behave differently form frame and monolithic wall structures under external loads, because of the distinct planes of weakness in the horizontal and vertical joints between panels. These joints may slide and open during shaking, producing large localized changes in the bending and shear stiffness of individual walls. The structural behavior of large precast panel buildings depends on the relative strength and stiffness of the panels and joints. Special modeling are thus required for the analysis of precast panel connections. This study suggests a new analytical modeling and method to obtain the rational estimation of discontinuity and slip movements form the connections of precast large panel structures .

  • PDF

Fatigue Study of K-Joints for Offshore Structures (해양구조물의 K-Joint 피로연구)

  • IM SUNG-WOO;PARK RO-SIK;JO CHUL-HEE;PARK KWAN-KYU
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.291-296
    • /
    • 2004
  • The paper describes a test program on welded K-joints fabricated from circular hollow section brace members and chords made with API 2W 50 grade steel produced by POSCO. The K-joints were tested for three loading conditions at RIST. The specimens were tested in reaction frame that allowed vertical uniform loading to the structure. From the test, the crack initiation and development were observed and the fatigue failure could be predicted. The results were also compared with the provided S-N curves by DnV.

  • PDF

Behavior of repaired RAC beam-column joints using steel welded wire mesh jacketed with cement mortar

  • Marthong, Comingstarful
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.91-100
    • /
    • 2019
  • In this paper three damaged exterior RC beam-column joints made of recycled aggregate concrete (RAC) were repaired. The aim of the study was to restore back the lost capacity of the beam-column joint to the original state or more. A relatively cheap material locally available galvanized steel welded wire mesh (GSWWM) of grid size 25 mm was used to confine the damaged region and then jacketed with cement mortar. Repaired specimens were also subjected to similar cyclic displacement as those of unrepaired specimens. Seismic parameters such as load carrying capacity, ductility, energy dissipation, stiffness degradation etc. were analyzed. Results show that repaired specimens exhibited better seismic performance and hence the adopted repairing strategies could be considered as satisfactory. These findings would be helpful to the field engineers to adopt a suitable rapid and cost efficient repairing technique for restoring the damaged frame structural joints for post earthquake usage.

Influence of exterior joint effect on the inter-story pounding interaction of structures

  • Favvata, Maria J.;Karayannis, Chris G.;Liolios, Asterios A.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.113-136
    • /
    • 2009
  • The seismic induced interaction between multistory structures with unequal story heights (inter-story pounding) is studied taking into account the local response of the exterior beam-column joints. Although several parameters that influence the structural pounding have been studied sofar, the role of the joints local inelastic behaviour has not been yet investigated in the literature as key parameter for the pounding problem. Moreover, the influence of the infill panels as an additional parameter for the local damage effect of the joints on the inter-story pounding phenomenon is examined. Thirty six interaction cases between a multistory frame structure and an adjacent shorter and stiffer structure are studied for two different seismic excitations. The results are focused: (a) on the local response of the critical external column of the multistory structure that suffers the hit from the slab of the adjacent shorter structure, and (b) on the local response of the exterior beam-column joints of the multistory structure. Results of this investigation demonstrate that the possible local inelastic response of the exterior joints may be in some cases beneficial for the seismic behaviour of the critical column that suffers the impact. However, in all the examined cases the developing demands for deformation of the exterior joints are substantially increased and severe damages can be observed due to the pounding effect. The presence of the masonry infill panels has also been proved as an important parameter for the response of the exterior beam-column joints and thus for the safety of the building. Nevertheless, in all the examined inter-story pounding cases the presence of the infills was not enough for the total amelioration of the excessive demands for shear and ductility of the column that suffers the impact.

Seismic Performance Evaluation of Non-Seismic Reinforced Concrete Buildings Strengthened by Perimeter Steel Moment Frame (철골 모멘트골조로 보강된 철근콘크리트 건물의 내진성능 평가)

  • Kim, Seonwoong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.233-241
    • /
    • 2020
  • This paper is to investigate the retrofitting effect for a non-seismic reinforced concrete frame strengthened by perimeter steel moment frames with indirect integrity, which ameliorates the problems of the direct integrity method. To achieve this, first, full-scale tests were conducted to address the structural behavior of a two-story non-seismic reinforced concrete frame and a strengthened frame. The non-seismic frame showed a maximum strength of 185 kN because the flexural-shear failure at the bottom end of columns on the first floor was governed, and shear cracks were concentrated at the beam-column joints on the second floor. The strengthened frame possessed a maximum strength of 338 kN, which is more than 1.8 times that of the non-seismic specimen. A considerable decrease in the quantity of cracks for the strengthened frame was observed compared with the non-seismic frame, while there was the obvious appearance of the failure pattern due to the shear crack. The lateral-resisting capacity for the non-seismic bare frame and the strengthened frame may be determined per the specified shear strength of the reinforced columns in accordance with the distance to a critical section. The effective depth of the column may be referred to as the longitudinal length from the border between the column and the foundation. The lateral-resisting capacity for the non-seismic bare frame and the strengthened frame may be reasonably determined per the specified shear strength of the reinforced columns in accordance with the distance to a critical section. The effective depth of the column may be referred to as the longitudinal length from the border between the column and the foundation. The proposed method had an error of about 2.2% for the non-seismic details and about 4.4% for the strengthened frame based on the closed results versus the experimental results.

Seismic response evaluation of concentrically rocking zipper braced frames

  • Sarand, Nasim Irani;Jalali, Abdolrahim
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.303-317
    • /
    • 2020
  • In this study an innovative rocking zipper braced frame (RZBF) is proposed to overcome the deficiencies of common concentrically braced frames. RZBF is an improved rocking concentrically braced frame which is based on combination of rocking behavior and zipper columns. The base rocking joints and post-tensioned bars provide rocking response and restoring force, respectively. Also, zipper columns distribute the unbalance force over the frame height and reduce the damage concentration. To evaluate seismic performance of RZBF, a comparison study is carried out considering concentrically braced frame, zipper braced frame, rocking concentrically braced frame and RZBF. Thereby, a suite of non-linear time history analyses had been performed on four different types of archetypes with four, six, eight, ten and twelve stories. Frames were designed and non-linear time history analyses were conducted in OpenSees. To compare the seismic behavior of the archetypes, roof drifts, residual roof drifts, story drifts, the forces of first and top story braces, PT bars forces, column uplift and base shears were taken in to consideration. Results illustrate that using RZBF, can reduce the damage due to reduced residual drifts. Zipper columns enhance the seismic performance of rocking systems. As the number of stories increase in the RZBF systems, larger top story braces were needed. So the RZBF system is applicable on low and midrise buildings.