• Title/Summary/Keyword: frame joints

Search Result 276, Processing Time 0.023 seconds

Reliability of Sn-8Zn-3Bi Solder Paste Applied to Lead and Lead-free Plating on Lead-frame under Thermal Shock Test (다양한 유무연 도금 리드프레임에 적용된 Sn-8Zn-3Bi 솔더 접합부의 열충격 신뢰성 평가)

  • Han, Sung-Won;Cho, Il-Je;Shin, Young-Eui
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.2 s.43
    • /
    • pp.35-40
    • /
    • 2007
  • The pull strength and fracture mechanism were investigated to evaluate the reliability and compatibility of Sn-8Zn-3Bi joints, the solder paste on lead and lead-free plating under thermal shock conditions. At the Sn-8Zn-3Bi solder joint, no crack initiation was observed during thermal shock test. After 1000 cycles, the strength of the solder joint decreased not sharply but reduced gradually compared with initial conditions. The decrement of strength was affected by ${\gamma}-Cu_5Zn_8$ IMC growth which caused the IMC fracture on the fracture surface and a change in fracture mode and initial crack point. Clearly, the Sn-8Zn-3Bi solder shows good reliability properties and compatibility with lead-free plated Cu LF under thermal shock temperatures between 248K and 423K.

  • PDF

Evaluation of Structural Behavior of Tapered Member with Snug-tightened Flush End-plate Connection (밀착조임 볼트체결방법에 따른 엔드플레이트 접합부의 구조성능평가)

  • Chung, Kyung-Soo;Kim, Woo-Sik;Park, Man-Woo;Do, Byung-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.121-128
    • /
    • 2010
  • The current trends in steel construction involve the use of tapered sections to minimize the use of excess materials to the extent possible, by choosing cross-sections that are as economical as possible abandoning the classical approach of using prismatic members. In addition, snug-tightened connections, especially the end-plate type, have the advantage of fetching less construction costs and shorter assembly times as opposed to fully tightened joints. Although they have many merits, however, snug-tightened bolted end plates are extremely complex in their structural behavior. In this study, an experimental investigation of the snug-tightened flush end-plate connections of tapered beams were conducted. The primary test parameters were the torque for the clamping bolt, the loading pattern, the bolt type and the connection failure type. Using initial stiffness and load-carrying capacity as proposed by Silva et al. and AISC (2003), the moment-rotation curve of a linearly tapered member with a snug-tightened flush end-plate connection was predicted. Moreover, numerical and experimental data for moment-rotation curves were compared.

A Study on the Forms and Modifications of 'Chang-aelgool'(窓乻骨) in Annex and Pavillion Buildings in Yeong-nam Region during the Chosun Dynasty - Focused on 'Ondol' Rooms and 'Ssang-chang' around the Main Floored Room - (조선시대 영남지방 별당과 정자건축의 '창얼굴' 형식 및 변천에 관한 연구 -온돌방과 대청 주위 쌍창을 중심으로-)

  • Park, Il-Chan;Lee, Ho-Yeol
    • Journal of architectural history
    • /
    • v.21 no.3
    • /
    • pp.73-92
    • /
    • 2012
  • This study mainly inquired characteristics and changes of 'Chang-aelgool' through 38 cases(with 161 Ssang-chang) of annex and pavillion buildings in Yeong-nam region which are built during the Chosun dynasty. The method of inquiry included actual survey of windows along with bibliographical research, and the results are as below. First, through the discovery of the term 'Chang-aelgool' as an indication of the window-forming frame in 'YeongGeonUiGwe'(1680 A.D), it is apparent that the term 'Chang-aelgool' was widely used in Korea from the late 17th century. Second, the 'Chang-aelgool' of study objects are classified into 4 categories. Type I and II are comprised of mitre-joints which cover the 4 corners of 'Chang-aelgool' and mainly used in building annex and pavillion buildings during the early period of the Chosun dynasty. Type III was widely used during the early and middle period of the Chosun dynasty and drastically dropped in number during the late period of the dynasty. Type IV is comprised of mitre-joint of the upper-half, tenon-jointing of the lower-half and widely used in annex and pavillion building during the late period of the Chosun dynasty. Third, the form of 'Chang-aelgool' has changed from rectangular form with longer width during the early period of Chosun dynasty to square form during the middle period and eventually ended up as a rectangular form with longer height during the late period of the dynasty. Fourth, it is considered that while mullion which is located in the center of 'Chang-aelgool' was mainly used around the main floored room during the early period of the Chosun dynasty, became commonly used in main floored room and 'ondol' rooms during the middle period and drastically dropped in number from then and ended up being not in use after the mid 18th century.

A Real-time System of Crowd Animation with Motion Pre-processing Method (동작 전처리 기법을 활용한 실시간 군중 애니메이션 시스템)

  • Ahn, Jung-Hyun;Wohn, Kwang-Yun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.3
    • /
    • pp.124-131
    • /
    • 2007
  • Research field on crowd animation can be classified into two major categories. One is to offer realism of the crowd motion and the other is to improve speed of the animation. For the last decade, a lot of research on realism and behavior of crowd have been presented. But lately, research on improving speed seems like more interesting. Therefore, in this paper, we conducted an experiment to analyze what is the main bottleneck of crowd animation. As the result, we find out one of the most important bottleneck is the number of joints transformed in each animation frame. In order to resolve this problem we propose a novel level-of-detail technique 'motion level-of-detail', which is a joint-reduction technique operated in the pre-processing time. We used a non-linear optimization, SQP (sequential quadric programming), to generate the low detailed motions.

Experimental Study on the Behavior of Hybrid Beam-Column Joints Consisted of Reinforced Concrete Column and Steel Beam (철근콘크리트 기둥 및 철골보로 구성된 복합구조의 접합분 거동에 관한 실험적 연구)

  • Choi, Keun-Do;You, Young-Chan;Lee, Li-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.297-304
    • /
    • 2003
  • This paper presents the test results of RCS(Reinforced Concrete Steel) beam-column joint with various types of transverse reinforcements such as small-column-type transverse reinforcements, four-piece ㄱ-shape assembled hoops and four-piece ㄱ-shape welded hoops. Five interior beam-column joint specimens were tested to examine the seismic performance and the shear strengths. From the test results, it was found that all the specimens sustained their strength at large levels of story drift(${\theta}$=0.035) without significant loss of strength and stiffness. Therefore it was concluded that the seismic performance and shear strength of the proposed RCS joint are at least the same as those of the specimen with conventional reinforcing details. Also, the contribution of the outer panel to the shear strength of the joint should be evaluated by the compression strut mechanism rather than compression field mechanism.

Numerical analysis of under-designed reinforced concrete beam-column joints under cyclic loading

  • Sasmal, Saptarshi;Novak, Balthasar;Ramanjaneyulu, K.
    • Computers and Concrete
    • /
    • v.7 no.3
    • /
    • pp.203-220
    • /
    • 2010
  • In the present study, exterior beam-column sub-assemblage from a regular reinforced concrete (RC) building has been considered. Two different types of beam-column sub-assemblages from existing RC building have been considered, i.e., gravity load designed ('GLD'), and seismically designed but without any ductile detailing ('NonDuctile'). Hence, both the cases represent the under-designed structure at different time frame span before the introduction of ductile detailing. For designing 'NonDuctile' structure, Eurocode and Indian Standard were considered. Non-linear finite element (FE) program has been employed for analysing the sub-assemblages under cyclic loading. FE models were developed using quadratic concrete brick elements with embedded truss elements to represent reinforcements. It has been found that the results obtained from the numerical analysis are well corroborated with that of experimental results. Using the validated numerical models, it was proposed to correlate the energy dissipation from numerical analysis to that from experimental analysis. Numerical models would be helpful in practice to evaluate the seismic performance of the critical sub-assemblages prior to design decisions. Further, using the numerical studies, performance of the sub-assemblages with variation of axial load ratios (ratio is defined by applied axial load divided by axial strength) has been studied since many researchers have brought out inconsistent observations on role of axial load in changing strength and energy dissipation under cyclic load.

Effect of Hot-stamping Heat Treatment on the Microstructure of Al-Segregated Zone in TWB Laser Joints of Al-Si-coated Boron Steel and Zn-coated DP Steel (Al-Si 도금된 보론강과 Zn 도금된 DP강 TWB 레이저 용접부내의 Al-편석부 미세조직에 미치는 핫스탬핑 열처리의 영향)

  • Jung, Byung Hun;Kong, Jong Pan;Kang, Chung Yun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.455-462
    • /
    • 2012
  • Al-Si coated boron steel and Zn coated DP steel plates were laser-welded to manufacture a Tailor Welded Blank (TWB) for a car body frame. Hot-stamping heat treatment ($900^{\circ}C$, 5 min) was applied to the TWB weld, and the microstructural change and transformation mechanism were investigated in the Al-rich area near the bond line of the Al-Si coated steel side. There was Al-rich area with a single phase, $Fe_3(Al,Si)$, which was transformed to ${\alpha}-Fe$ (Ferrite) after the heat treatment. It could be explained that the $Fe_3(Al,Si)$ phase was transformed to ${\alpha}-Fe$ during heat treatment at $900^{\circ}C$ for 5 min and the resultant ${\alpha}-Fe$ phase was not transformed by rapid cooling. Before the heat treatment, the microstructures around the $Fe_3(Al,Si)$ phase consisted of martensite, bainite and ${\alpha}-Fe$ while they were transformed to martensite and ${\delta}-Fe$ after the heat treatment. Due to the heat treatment, Al was diffused to the $Fe_3(Al,Si)$ and this resulted in an increase of Al content to 0.7 wt% around the Al-rich area. If the weld was held at $900^{\circ}C$ for 5 min it was transformed to a mixture of austenite (${\gamma}$) and ${\delta}-Fe$, and only ${\gamma}$ was transformed to the martensite by water cooling while the ${\delta}-Fe$ was remained unchanged.

Behavior Evaluation on the Non-symmetric Composite Column for Unit Modular Frames (모듈러 골조용 비대칭 기둥-보 접합부에 대한 거동 평가)

  • Park, Keum-Sung;Lee, Sang-Sup;Bae, Kyug-Woong;Moon, Ji-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.36-44
    • /
    • 2019
  • The purpose of this study is to evaluate the structural performance of press-formed type asymmetric column to beam connections of steel-PC composite module frames. Most of the column sections of the joints making up the modular frame use a closed square steel section. The column-beam connection using the closed column section has difficulty in reducing the workability and securing the fire resistance. In order to overcome this disadvantage, concrete is filled in the asymmetrical open type cross section of the steel plate by press forming. A total of four specimens were fabricated to investigate the structural performance of press formed type asymmetric column to beam connections. The experimental results show that the structural performance and behavior of the asymmetric columns are different depending on whether the asymmetric column cross section is composited or the column width thickness ratio. The structural performance of the press formed type asymmetric column to beam connection was evaluated by comparing the experimental results with the theoretical formulas.

Lateral Resistance of CLT Wall Panels Composed of Square Timber Larch Core and Plywood Cross Bands

  • JANG, Sang Sik;LEE, Hyoung Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.547-556
    • /
    • 2019
  • Thinned, small larch logs have small diameters and no value-added final use, except as wood chips, pallets, or fuel wood, which are products with very low economic value; however, their mechanical strength is suitable for structural applications. In this study, small larch logs were sawed, dried, and cut into square timbers (with a $90mm{\times}90mm$ cross section) that were laterally glued to form core panels used to manufacture cross-laminated timber (CLT) wall panels. The surface and back of these core panels were covered with 12-mm-thick structural plywood panels, used as cross bands to obtain three-ply CLT wall panels. This attachment procedure was conducted in two different ways: gluing and pressing (CGCLT) or gluing and nailing (NGCLT). The size of the as-manufactured CLT panels was $1,220mm{\times}2,440mm$, the same as that of the plywood panels. The final wall panels were tested under lateral shear force in accordance with KS F 2154. As the lateral load resistance test required $2,440mm{\times}2,440mm$ specimens, two CLT wall panels had to be attached in parallel. In addition, the final CLT panels had tongued and grooved edges to allow parallel joints between adjacent pieces. For comparison, conventional light-frame timber shear walls and midply wall systems were also tested under the same conditions. Shear walls with edge nail spacing of 150 mm and 100 mm, the midply wall system, and the fabricated CGCLT and NGCLT wall panels exhibited maximum lateral resistances of 6.1 kN/m (100%), 9.7 kN/m (158%), 16.9 kN/m (274%), 29.6 kN/m (482%), and 35.8 kN/m (582%), respectively.

Deforming the Walking Motion with Geometrical Editing (주 관절 경로의 변형을 통한 걷기 동작 수정)

  • Kim, Meejin;Lee, Sukwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • This paper proposes a simple deformation method for editing the trajectory of a walking motion with preserving its style. To this end, our method analyzes the trajectory of the root joint into the graph and deforms it by applying the graph Laplace operator. The trajectory of the root joint is presented as a graph with a vertex defined the position and direction at each time frame on the motion dataThe graph transforms the trajectory into the differential coordinate, and if the constraints are set on the trajectory vertex, the solver iterative approaches to the solution. By modifying the root trajectory, we can continuously vary the walking motion, which reduces the cost of capturing a whole motion that is required. After computes the root trajectory, other joints are copied on the root and post-processed as a final motion. At the end of our paper, we show the application that the character continuously walks in a complex environment while satisfying user constraints.