• 제목/요약/키워드: frame buildings

검색결과 688건 처리시간 0.031초

스틸 커튼월의 단열성능 및 결로방지성능 평가 (Evaluation of the Thermal Performance and Condensation Resistance of a Steel Frame Curtain Wall System)

  • 김선숙;조봉호
    • 한국태양에너지학회 논문집
    • /
    • 제33권3호
    • /
    • pp.51-57
    • /
    • 2013
  • Metal curtain wall systems are widely used in high-rise commercial and residential buildings. While aluminum is the most frequent used frame material, steel framing is also reemerging as a high-performance material in glazed curtain walls due to less thermal conductivity and design flexibility. The purpose of this study is to evaluate thermal performance of a steel frame curtain wall system by comparing with a aluminum frame curtain wall system. The thermal transmittance was measured according to KS 2278, and condensation resistance was calculated by the test results according to KS F 2295. The steel framing test specimen showed lower thermal transmittance and temperature descending factor compared to the aluminum framing test specimen.

비내력벽을 가진 RC모멘트저항골조의 취약도 해석 (Fragility Analysis of RC Moment Resisting Frame with Masonry Infill Walls)

  • 고현;박용구;이동근
    • 한국전산구조공학회논문집
    • /
    • 제22권4호
    • /
    • pp.355-362
    • /
    • 2009
  • 국내에 많이 건설되고 있는 빌라형 주택은 건축적인 요구를 위하여 저층부에 필로티를 두고 있는 경우가 많다. 구조물 상층부의 비내력벽에 의하여 저층에 연약층을 유발하고 따라서 지진에 매우 취약하다. 그러나 설계시 일반적인 설계방법과 동일하게 상부층의 칸막이벽은 비구조체로 간주되어 무시된다. 그러므로 설계단계에서 무시되는 비내력벽의 유무에 따라서 건축물이 어떠한 지진거동의 차이점을 보이는지 살펴볼 필요가 있다. 본 연구에서는 대상 건축물의 지진취약도 해석을 통하여 비내력벽의 유무에 따른 건축물의 지진거동을 평가하였다. 비내력벽의 유무에 따른 동일한 골조를 가지는 저층 철근콘크리트 건축물을 적용하여 지진거동에서 비내력벽의 영향을 평가하였다. 비내력벽은 보편화된 모형화 방법인 등가의 대각 압축 스트럿으로 고려하였다. 골조만 있는 모델과 연약층이 있는 모델의 취약도곡선을 비교하였다. 해석 결과로 연약층이 있는 RC 건물의 내진성능은 설계기준에서 제시하고 있는 성능수준을 만족하지 못하며 지진에 취약함을 보여준다.

유사동적실험에 의한 탄성패드 접합 H형 철골프레임공법으로 보강 된 기존 중·저층 R/C 골조의 내진성능 평가 (Seismic Capacity Evaluation of Existing Medium-and low-rise R/C Frame Retrofitted by H-section Steel Frame with Elastic Pad Based on Pseudo-dynamic testing)

  • 김진선;이강석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권4호
    • /
    • pp.83-91
    • /
    • 2021
  • 본 연구에서는 기존 철근콘크리트 (R/C) 구조체와 내진보강 부재의 접합부의 성능을 향상시키기 위해서 접합부에 탄성패드를 가지는 새로운 H형강 철골프레임 내부접합형 내진보강공법 (H-section Steel Frame with Elastic Pad, HSFEP)을 제안하였다. HSFEP 시스템은 필요 내진보강량 산정이 간편한 내력향상형 보강공법으로서, 전단파괴가 발생할 가능성이 매우 높은 비내진상세를 가지는 중·저층 R/C 건축물에 적합한 공법이다. 본 연구에서 제안한 HSFEP 내진보강공법의 유용성을 검증하기 위하여 비내진상세를 가지는 국내 R/C 건축물을 바탕으로 실물 2층 골조 실험체를 제작하여 유사동적실험을 수행하여 최대지진응답 하중 및 변위, 지진피해정도를 중심으로 내진보강효과를 검토하였다. 실험결과 본 연구에서 개발한 HSFEP 내부접합형 내진보강법은 접합부성능이 개선되었으며, 효과적으로 수평극한내력을 증진시킴과 동시에 대지진 입력 시에도 지진응답변위를 매우 효과적으로 억제시켰다.

철골 모멘트골조로 보강된 철근콘크리트 건물의 내진성능 평가 (Seismic Performance Evaluation of Non-Seismic Reinforced Concrete Buildings Strengthened by Perimeter Steel Moment Frame)

  • 김선웅
    • 한국지진공학회논문집
    • /
    • 제24권5호
    • /
    • pp.233-241
    • /
    • 2020
  • This paper is to investigate the retrofitting effect for a non-seismic reinforced concrete frame strengthened by perimeter steel moment frames with indirect integrity, which ameliorates the problems of the direct integrity method. To achieve this, first, full-scale tests were conducted to address the structural behavior of a two-story non-seismic reinforced concrete frame and a strengthened frame. The non-seismic frame showed a maximum strength of 185 kN because the flexural-shear failure at the bottom end of columns on the first floor was governed, and shear cracks were concentrated at the beam-column joints on the second floor. The strengthened frame possessed a maximum strength of 338 kN, which is more than 1.8 times that of the non-seismic specimen. A considerable decrease in the quantity of cracks for the strengthened frame was observed compared with the non-seismic frame, while there was the obvious appearance of the failure pattern due to the shear crack. The lateral-resisting capacity for the non-seismic bare frame and the strengthened frame may be determined per the specified shear strength of the reinforced columns in accordance with the distance to a critical section. The effective depth of the column may be referred to as the longitudinal length from the border between the column and the foundation. The lateral-resisting capacity for the non-seismic bare frame and the strengthened frame may be reasonably determined per the specified shear strength of the reinforced columns in accordance with the distance to a critical section. The effective depth of the column may be referred to as the longitudinal length from the border between the column and the foundation. The proposed method had an error of about 2.2% for the non-seismic details and about 4.4% for the strengthened frame based on the closed results versus the experimental results.

고강도강재를 사용한 건물골조방식 초고층건물의 구조비용 최적화 (Structural Cost Optimization Techniques for High-rise Buildings Frame Systems Using High-strength Steels)

  • 서지현;권봉근;김상범;박효선
    • 한국전산구조공학회논문집
    • /
    • 제22권1호
    • /
    • pp.53-63
    • /
    • 2009
  • 초고층건물의 구조설계에 고강도강재를 활용하는 것은 수직 부재 크기의 감소로 인한 건축 계획적 측면의 용이성 그리고 골조 물량의 감소로 인한 구조 및 시공 측면에서의 비용적 효율성 등이 예상되지만 적용사례 부족 및 합리적 설계 방법의 부재 등의 이유로 인해 고강도강재는 일부 건축물에서 제한적으로 사용피고 있다. 특히, 많은 부재로 구성되는 초고층 건물에서 강재의 적절한 강도를 고려한 경제적 단면 성능의 결정은 결코 쉬운 일이 아니다. 이러한 이유로 인해 최근 많은 초고층건물들은 콘크리트를 이용하여 계획되거나 시공되고 있다. 그러므로 본 논문에서는 초고층건물 구조설계에서 강재의 적절한 강도와 사용위치를 합리적으로 결정하여 구조비용을 최소화할 수 있는 초고층건물 구조비용 최적화기법을 개발하였다. 개발된 최적설계기법을 건물골조시스템의 35층 건물의 구조 설계에 적용하여 효율성과 적용성을 평가하였다. 적용 결과, 제안된 최적설계기법은 설정된 제약조건을 만족시키며 최적의 구조비용을 안정적으로 산출할 수 있음을 확인할 수 있었다.

Improved capacity spectrum method with inelastic displacement ratio considering higher mode effects

  • Han, Sang Whan;Ha, Sung Jin;Moon, Ki Hoon;Shin, Myoungsu
    • Earthquakes and Structures
    • /
    • 제7권4호
    • /
    • pp.587-607
    • /
    • 2014
  • Progressive collapse, which is referred to as the collapse of the entire building under local damages, is a common failure mode happened by earthquakes. The collapse process highly depends on the whole structural system. Since, asymmetry of the building plan leads to the local damage concentration; it may intensify the progressive collapse mechanism of asymmetric buildings. In this research the progressive collapse of regular and irregular 6-story RC ordinary moment resisting frame buildings are studied in the presence of the earthquake loads. Collapse process and collapse propagation are investigated using nonlinear time history analyses (NLTHA) in buildings with 5%, 15% and 25% mass asymmetry with respect to the number of collapsed hinges and story drifts criteria. Results show that increasing the value of mass eccentricity makes the asymmetric buildings become unstable earlier and in the early stages with lower number of the collapsed hinges. So, with increasing the mass eccentricity in building, instability and collapse of the entire building occurs earlier, with lower potential of the progressive collapse. It is also demonstrated that with increasing the mass asymmetry the decreasing trend of the number of collapsed beam and column hinges is approximately similar to the decreasing trend in the average story drifts of the mass centers and stiff edges. So, as an alternative to a much difficult-to-calculate local response parameter of the number of collapsed hinges, the story drift, as a global response parameter, measures the potential of progressive collapse more easily.

Seismic performance of concrete moment resisting frame buildings in Canada

  • Kafrawy, Omar El;Bagchi, Ashutosh;Humar, Jag
    • Structural Engineering and Mechanics
    • /
    • 제37권2호
    • /
    • pp.233-251
    • /
    • 2011
  • The seismic provisions of the current edition (2005) of the National Building Code of Canada (NBCC) differ significantly from the earlier edition. The current seismic provisions are based on the uniform hazard spectra corresponding to 2% probability of exceedance in 50 years, as opposed to the seismic hazard level with 10% probablity of exeedance in 50 years used in the earlier edition. Moreover, the current code is presented in an objective-based format where the design is performed based on an acceptable solution. In the light of these changes, an assessment of the expected performance of the buildings designed according to the requirements of the current edition of NBCC would be very useful. In this paper, the seismic performance of a set of six, twelve, and eighteen story buildings of regular geometry and with concrete moment resisting frames, designed for Vancouver western Canada, has been evaluated. Although the effects of non-structural elements are not considered in the design, the non-structural elements connected to the lateral load resisting systems affect the seismic performance of a building. To simulate the non-structural elements, infill panels are included in some frame models. Spectrum compatible artificial ground motion records and scaled actual accelerograms have been used for evaluating the dynamic response. The performance has been evaluated for each building under various levels of seismic hazard with different probabilities of exceedance. From the study it has been observed that, although all the buildings achieved the life-safety performance as assumed in the design provisions of the building code, their performance characteristics are found to be non-uniform.

Progressive Collapse of Steel High-Rise Buildings Exposed to Fire: Current State of Research

  • Jiang, Jian;Li, Guo-Qiang
    • 국제초고층학회논문집
    • /
    • 제7권4호
    • /
    • pp.375-387
    • /
    • 2018
  • This paper presents a review on progressive collapse mechanism of steel framed buildings exposed to fire. The influence of load ratios, strength of structural members (beam, column, slab, connection), fire scenarios, bracing systems, fire protections on the collapse mode and collapse time of structures is comprehensively reviewed. It is found that the key influencing factors include load ratio, fire scenario, bracing layout and fire protection. The application of strong beams, high load ratios, multi-compartment fires will lead to global downward collapse which is undesirable. The catenary action in beams and tensile membrane action in slabs contribute to the enhancement of structural collapse resistance, leading to a ductile collapse mechanism. It is recommended to increase the reinforcement ratio in the sagging and hogging region of slabs to not only enhance the tensile membrane action in the slab, but to prevent the failure of beam-to-column connections. It is also found that a frame may collapse in the cooling phase of compartment fires or under travelling fires. This is because that the steel members may experience maximum temperatures and maximum displacements under these two fire scenarios. An edge bay fire is more prone to induce the collapse of structures than a central bay fire. The progressive collapse of buildings can be effectively prevented by using bracing systems and fire protections. A combination of horizontal and vertical bracing systems as well as increasing the strength and stiffness of bracing members is recommended to enhance the collapse resistance. A protected frame dose not collapse immediately after the local failure but experiences a relatively long withstanding period of at least 60 mins. It is suggested to use three-dimensional models for accurate predictions of whether, when and how a structure collapses under various fire scenarios.

Structural member stiffness influence on vertical earthquake behaviour of mid-rise R/C frame buildings in Turkey

  • Selcuk Bas
    • Computers and Concrete
    • /
    • 제33권6호
    • /
    • pp.689-706
    • /
    • 2024
  • This study is aimed at identifying structural element stiffness influence on vertical earthquake response of mid-rise R/C frame buildings. To this aim, a mid-rise RC building structure is designed as per the new Turkish Seismic Code for Buildings-2018, and 3D FE model of the building is established. Based on the established FE model, a total number of six buildings are considered depending on certain percentage increase in beam, slab, and column. The time-history response analyses (THA) are performed separately for only horizontal (H) and horizontal +vertical (H+V) earthquake motions to make a comparison between the load cases. The analysis results are presented comparatively in terms of the monitoring parameters of the base overturning moment (Mo), the top-story lateral displacement (dL) and the top-story vertical displacement (dV). The obtained results reveal that the base overturning moment and the top-story vertical displacement are affected by vertical earthquake motion regardless of the increase in the dimension of beam, slab, and column. However, vertical earthquake motion is not effective on the top-story lateral displacement due to no change between H and H+V load. The dimensional increase in either slab or beam leads to a considerable increase in the base overturning moment and the top-story vertical displacement while causing decrease in the top-story lateral displacement. In addition, the dimensional increase in column has a positive effect on the decrease in the monitoring parameters of the base overturning moment (Mo), the top-story lateral displacement (dL) and the top-story vertical displacement (dV).

국내 소규모 철근콘크리트 건축물의 내진거동 고찰 (A Study on the Seismic Behavior of Small-Size Reinforced Concrete Buildings in Korea)

  • 김태완;엄태성;김철구;박홍근
    • 한국지진공학회논문집
    • /
    • 제18권4호
    • /
    • pp.171-180
    • /
    • 2014
  • Since the execution of structural design by professional structural engineers is not mandatory for small-size buildings in Korea, structural design is conducted by architects or contractors resulting in concern about the seismic safety of the buildings. Therefore, the Korean Structural Engineers Association proposed dedicated structural design criteria in 2012. The criteria were developed based on a deterministic approach in which the structural members are designed only with information of story and span length of the buildings and without structural analyses. However, due to the short time devoted to their development, these criteria miss satisfactory basis and do not deal with structural walls popularly used in Korea. Accordingly, the Ministry of Land, Infrastructure and Transport launched a research on the 'development of structural performance enhancement technologies for small-size buildings against earthquakes and climate changes'.. As part of this research, this paper intends to establish direction for the preparation of deterministic structural design guidelines for seismic safety of domestic small-size reinforced concrete buildings. To that goal, a typical plan of these buildings is selected considering frames only and frames plus walls, and then design is conducted by changing the number of stories and span length. Next, the seismic performance is analyzed by nonlinear static pushover analysis. The results show that the structural design guidelines should be developed by classifying frames only and frames plus walls. The size and reinforcement of structural elements should be provided in the middle level of the current Korean Building Code and criteria for small buildings by considering story and span length for buildings with frames only, and determined by considering the shape and location of walls and the story and span length as well for buildings with frames plus walls. It is recommended that the design of walls should be conducted by reducing the amount of walls along with symmetrically located walls.