• 제목/요약/키워드: frame buildings

Search Result 688, Processing Time 0.024 seconds

Analysis of Factors affecting Satisfaction of Street-scape -Focused on the Street of Central Market, Pohang City- (가로경관 만족도의 영향요인 분석 -포항시 중앙상가로변을 중심으로-)

  • Choi, Moo-Hyun;Hyun, Taek-Soo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • The purpose of this study was to explore the factors affecting satisfaction of street-scape. According to this purpose, in chapter 2, by inspecting conservation of street environment and streetscape, deduce the frame for analyzing streetscape in commercial district. In chapter 3, analyzing present condition and problems of selected streets in Pohang City, derive the primary factors to induce desirable streetscape through problems and their reason between the analyzed elements of building form. Analyzed elements are composed pavement of road, street furniture, height of buildings, color and material of building and outdoor advertisements, etc. In chapter 4, by conducting a questionnaire survey of pedestrians about street images and the preference, propose the direction of improvement about streetscape in commercial district. As the study method, level of satisfaction was analyzed using the components of street-scape. The collected data was analyzed through Reliability Analysis, ANOVA, Factor Analysis, Regression Analysis. A regression analysis for deriving main factors affecting the satisfaction level of street-scape showed that signboard, sign color, width of street, paving materials, street furniture, open space were found to be the most important.

A Study on the Renaissance/Baroque Characteristics Appearing in Contemporary Architecture - Focused on the Analysis of National Museum of Modern and Contemporary Art Seoul Branch and Dongdaemun Design Plaza from the Concept Frame of Wölffrin - (현대건축에 나타난 르네상스적/바로크적 특성에 관한 연구 - 뵐플린의 개념틀에 의한 국립현대미술관 서울관과 동대문디자인플라자의 비교분석을 중심으로 -)

  • Kim, In-sung
    • Korean Institute of Interior Design Journal
    • /
    • v.26 no.1
    • /
    • pp.142-152
    • /
    • 2017
  • This study investigated Renaissance and Baroque architectural characteristics found in contemporary public buildings in Seoul, which are National Museum of Modern and Contemporary Art Seoul Branch(MMCA) and Dongdaemun Design Plaza(DDP). Among H. $W{\ddot{o}}lfflin^{\prime}s$ five categories for Renaissance-Baroque art study, four categories (Clearness/Unclearness, Plane/Recession, Closed form/Open form, Multiplicity/Unity) are applied for the analysis as the architectural issues of Transparency/Concealment, Exhibited/Experienced Depth, Formal/Figural, and Composed harmony/Generated Unity. As a result, MMCA showed the characteristics of the extreme of Modern classic such as transparency, homogenization of space, formalism, and composition of multiple elements. Meanwhile, the study could find various Baroque characteristics from DDP such as separation of indoor and outdoor, phenomenological depth, rule breaking, and generation of figure. The study finally argued that DDP would not be an anti-modern, but try to inherit and overcome the modern architecture to explore different possibilities, and that the similar relationship between Renaissance and Baroque art could be found in these two cases.

Potential Ruse as a function of the Buried Depth for Structure (구조체의 매설깊이에 따른 전위상승)

  • Gil, Hyoung-Jun;Kim, Dong-Ook;Kim, Dong-Woo;Lee, Ki-Yeon;Kim, Hyang-Kon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07e
    • /
    • pp.27-28
    • /
    • 2006
  • This paper deals with an approach to the reduction of potential rise according to the buried depth of structure. In order to analyze the surface potential rise of structure, an electrolytic tank which simulates the semi-infinite earth has been used. The potential rise has been measured and analyzed for types of structure using an electrolytic tank experimental apparatus in real time. The structure models were designed through reducing real buildings and fabricated with two types on a scale of one-one hundred sixty When a test current flowed through structure models, the potential rise of outline frame type(structure model A) was more high than that of electric cage type(structure model B). The distributions of surface potential rise are dependent on the buried depth of structure model.

  • PDF

A Structural Analysis of Tsunami-proof Damper in Nuclear Power Plant (원자력 발전소에서 쓰나미 방지용 댐퍼에 대한 구조해석)

  • Chin, Do-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.603-609
    • /
    • 2020
  • The purpose of this study is to research dampers, which are applied mainly to buildings adjacent to the coast, such as nuclear facilities, and used for ventilation and can safely protect lives and equipment in emergency situations. Comparing the equivalent stress for three models with hinge reinforcement and support reinforcement based on the early design model for Damper, in the Base model, the highest stress occurred in the part of hinge, especially in the centrally mounted hinge, and after reinforced the hinge, it was occurred in the rear support. For models reinforced hinges and supports, it is considered that reinforcement for stiffness will be required in the future as it entered within the range of allowable stress. For the safety factor distribution, the minimum safety ratio was sufficiently secured at least 1 and was high at the edge of the Damper frame and the Blade. As the hinge was reinforced, the safety factor distribution of Blade was increased, and it was verified that the safety factor was secured through the support reinforcement.

Seismic Analysis of Flat Slab Structures considering Stiffness Degradation (강성저감을 고려한 플랫슬래브 구조물의 지진해석)

  • 김현수;이승재;이동근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.191-198
    • /
    • 2003
  • Flat slab system has been adopted in many buildings constructed recently because of the advantage of reduced floor heights to meet the economical and architectural demands. Structural engineers commonly use the equivalent frame method(EFM) with equivalent beams proposed by Jacob S. Grossman in practical engineering for the analysis of flat slab structures. However, in many cases, when it is difficult to use the EFM, it is necessary to use a refined finite element model for an accurate analysis. But it would take significant amount of computational time and memory if the entire building structure were subdivided into a finer mesh. An efficient analytical method is proposed in this study to obtain accurate results in significantly reduced computational time. The proposed method employs super elements developed using the matrix condensation technique and fictitious beams are used in the development of super elements to enforce the compatibility at the interfaces of super elements. The stiffness degradation of flat slab system considered in the EFM was taken into account by reducing the elastic modulus of floor slabs in this study. Static and dynamic analyses of example structures were peformed and the efficiency and accuracy of the proposed method were verified by comparing the results with those of the refined finite element model and the EFM.

  • PDF

Design and Implementation of UV Flame Detector Module Using Low Power Algorithm of ZigBee (ZigBee Protocol의 저 전력 알고리듬을 이용한 UV Flame Detector의 설계 및 구현)

  • Lee, Young-Jae;Chang, Choong-Won;Rhee, Sang-Yong;Jung, Min-Su
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.429-436
    • /
    • 2008
  • Nowadays fires must be detected rapidly Abstract, and by connecting the detector's distribution, sender, transponder, receiver and others can be connected. Mechanical systems are implemented in today's buildings. However, this kind of constructing method has some disadvantages, that is, if fire happens somewhere, we cannot judge where the fires happen, and it is also difficult to judge what extent the fires reach. In order to overcome the disadvantages, in this paper, according to the tendency of combining the Ubiquitous and Intelligent Network, we propose a type of system by using the method of comparing the differences of the existed systems. The proposed system is designed to perceive the fires rapidly and confirm the fire place and fire scale correctly.

Capacity spectrum method based on inelastic spectra for high viscous damped buildings

  • Bantilas, Kosmas E.;Kavvadias, Ioannis E.;Vasiliadis, Lazaros K.
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.337-351
    • /
    • 2017
  • In the present study a capacity spectrum method based on constant ductility inelastic spectra to estimate the seismic performance of structures equipped with elastic viscous dampers is presented. As the definition of the structures' effective damping, due to the damping system, is necessary, an alternative method to specify the effective damping ratio ${\xi}eff$ is presented. Moreover, damping reduction factors (B) are introduced to generate high damping elastic demand spectra. Given the elastic spectra for damping ratio ${\xi}eff$, the performance point of the structure can be obtained by relationships that relate the strength demand reduction factor (R) with the ductility demand factor (${\mu}$). As such expressions that link the above quantities, known as R - ${\mu}$ - Τ relationships, for different damping levels are presented. Moreover, corrective factors (Bv) for the pseudo-velocity spectra calculation are reported for different levels of damping and ductility in order to calculate with accuracy the values of the viscous dampers velocities. Finally, to evaluate the results of the proposed method, the whole process is applied to a four-storey reinforced concrete frame structure and to a six-storey steel structure, both equipped with elastic viscous dampers.

Proposal of a Incremental Modal Pushover Analysis (IMPA)

  • Bergami, A.V.;Forte, A.;Lavorato, D.;Nuti, C.
    • Earthquakes and Structures
    • /
    • v.13 no.6
    • /
    • pp.539-549
    • /
    • 2017
  • Existing reinforced concrete frame buildings designed for vertical loads could only suffer severe damage during earthquakes. In recent years, many research activities were undertaken to develop a reliable and practical analysis procedure to identify the safety level of existing structures. The Incremental Dynamic Analysis (IDA) is considered to be one of the most accurate methods to estimate the seismic demand and capacity of structures. However, the executions of many nonlinear response history analyses (NL_RHA) are required to describe the entire range of structural response. The research discussed in this paper deals with the proposal of an efficient Incremental Modal Pushover Analysis (IMPA) to obtain capacity curves by replacing the nonlinear response history analysis of the IDA procedure with Modal Pushover Analysis (MPA). Firstly, In this work, the MPA is examined and extended to three-dimensional asymmetric structures and then it is incorporated into the proposed procedure (IMPA) to estimate the structure's seismic response and capacity for given seismic actions. This new procedure, which accounts for higher mode effects, does not require the execution of complex NL-RHA, but only a series of nonlinear static analysis. Finally, the extended MPA and IMPA were applied to an existing irregular framed building.

Case study on seismic retrofit and cost assessment for a school building

  • Miano, Andrea;Chiumiento, Giovanni
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.53-64
    • /
    • 2020
  • In different high seismic regions around the world, many non-ductile existing reinforced concrete frame buildings, built without adequate seismic detailing requirements, have been damaged or collapsed after past earthquakes. The assessment and the retrofit of these non-ductile concrete structures is crucial theme of research for all the scientific community of engineers. In particular, a careful assessment of the existing building is fundamental for understanding the failure mechanisms that govern the collapse of the structure or the achievement of the recommended limit states. Based on the seismic assessment, the best retrofit strategy can be designed and applied to the structure. A school building located in Avellino province (Italy) is the case study. The analysis of seismic vulnerability carried out on the mentioned building has highlighted deficiencies in both static and seismic load conditions. The retrofit of the building has been designed based on different retrofit options in order to show the real retrofit design developed from the engineers to achieve the seismic safety of the building. The retrofit costs associated to structural operations are calculated for each case and have been summed up to the costs of the in situ tests. The paper shows a real retrofit design case study in which the best solution is chosen based on the results in terms of structural performance and cost among the different retrofit options.

An experimental study on strengthening of vulnerable RC frames with RC wing walls

  • Kaltakci, M. Yasar;Yavuz, Gunnur
    • Structural Engineering and Mechanics
    • /
    • v.41 no.6
    • /
    • pp.691-710
    • /
    • 2012
  • One of the most popular and commonly used strengthening techniques to protect against earthquakes is to infill the holes in reinforced concrete (RC) frames with fully reinforced concrete infills. In some cases, windows and door openings are left inside infill walls for architectural or functional reasons during the strengthening of reinforced concrete-framed buildings. However, the seismic performance of multistory, multibay, reinforced concrete frames that are strengthened by reinforced concrete wing walls is not well known. The main purpose of this study is to investigate the experimental behavior of vulnerable multistory, multibay, reinforced concrete frames that were strengthened by introducing wing walls under a lateral load. For this purpose, three 2-story, 2-bay, 1/3-scale test specimens were constructed and tested under reversed cyclic lateral loading. The total shear wall (including the column and wing walls) length and the location of the bent beam bars were the main parameters of the experimental study. According to the test results, the addition of wing walls to reinforced concrete frames provided significantly higher ultimate lateral load strength and higher initial stiffness than the bare frames did. While the total shear wall length was increased, the lateral load carrying capacity and stiffness increased significantly.