• Title/Summary/Keyword: frame building

Search Result 1,103, Processing Time 0.03 seconds

A Proposal of the Wind Pressure Coefficient and Simplified Wind Load Estimating Formula for the Design of Structural Frames of the Low-Rise Buildings (저층건축물의 구조골조 설계용 풍압계수 및 풍하중 평가 약산식의 제안)

  • Park, Jae Hyeong;Chung, Yung Bea;Ha, Young Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.289-299
    • /
    • 2009
  • This study summarizes basic results on the characteristics of mean wind pressure distribution on rectangular low-rise buildings with various breadths and depths through simultaneous multi-point wind pressure test. 5 types of rectangular wind pressure test models with various breadths and depths have been made for this study. Wind pressure tests are conducted on the Boundary Layer Wind Tunnel at Kumoh National Institute of Technology. The characteristics of mean wind pressure distribution with respect to various breadths and depths of low-rise buildings are analyzed into windward face, leeward face and side faces of building. From the results, new wind pressure coefficients and simplified wind load estimating formula for the resonable design of the structural frames of low-rise building were proposed.

Shear Performance of Hybrid Post and Beam Wall System Infilled with Structural Insulation Panel (SIP)

  • Shim, Kug-Bo;Hwang, Kweon-Hwan;Park, Joo-Saeng;Park, Moon-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.405-413
    • /
    • 2010
  • A hybrid post and beam shear wall system with structural insulation panel (SIP) infill was developed as a part of a green home 'Han-green' project through post and beam construction for contemporary life style. This project is on-going at the Korea Forest Research Institute to develop a new building system which improves Korean traditional wet-type building system and stimulates industrialized wood construction practice with pre-cut system. Compared to the traditional wet-type infill wall components, the hybrid wall system has benefits, such as, higher structural capacity, better thermal insulation performance, and shorter construction term due to the dry-type construction. To build up the hybrid wall system, in previous, SIP infill wall components can be manufactured at factory, and then inserted and nailed with helically threaded nails into the post and beam members at site. Shear performance of the hybrid wall system was evaluated through horizontal shear tests. The SIP hybrid wall system showed higher maximum shear strength, initial stiffness, ductility, yield strength, specified strength, and the specified allowable strength than those of post and beam with light-frame wall system. In addition to this, the hybrid wall system can provide speedy construction and structural and functional advantages including energy efficiency in the building system.

Instrumentation and system identification of a typical school building in Istanbul

  • Bakir, Pelin Gundes
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.179-197
    • /
    • 2012
  • This study presents the findings of the structural health monitoring and the real time system identification of one of the first large scale building instrumentations in Turkey for earthquake safety. Within this context, a thorough review of steps in the instrumentation, monitoring is presented and seismic performance evaluation of structures using both nonlinear pushover and nonlinear dynamic time history analysis is carried out. The sensor locations are determined using the optimal sensor placement techniques used in NASA for on orbit modal identification of large space structures. System identification is carried out via the stochastic subspace technique. The results of the study show that under ambient vibrations, stocky buildings can be substantially stiffer than what is predicted by the finite element models due to the presence of a large number of partitioning walls. However, in a severe earthquake, it will not be safe to rely on this resistance due to the fact that once the partitioning walls crack, the bare frame contributes to the lateral stiffness of the building alone. Consequently, the periods obtained from system identification will be closer to those obtained from the FE analysis. A technique to control the validity of the proportional damping assumption is employed that checks the presence of phase difference in displacements of different stories obtained from band pass filtered records and it is confirmed that the "proportional damping assumption" is valid for this structure. Two different techniques are implemented for identifying the influence of the soil structure interaction. The first technique uses the transfer function between the roof and the basement in both directions. The second technique uses a pre-whitening filter on the data obtained from both the basement and the roof. Subsequently the impulse response function is computed from the scaled cross correlation between the input and the output. The overall results showed that the structure will satisfy the life safety performance level in a future earthquake but some soil structure interaction effects should be expected in the North South direction.

Optimization of T/C Lifting Plan using Dependency Structure Matrix (DSM) (DSM을 활용한 타워크레인 양중계획 최적화에 관한 연구)

  • Kim, Seungho;Kim, Sangyong;Jean, Jihoon;An, Sung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.151-159
    • /
    • 2016
  • Tower crane (T/C) is one of the major equipment that is highly demanded in construction projects. Especially, most high-rise building projects require T/C to perform lifting and hoisting activities of materials. Therefore, lifting plan of T/C needs to reduce construction duration and cost. However, most lifting plan of the T/C in construction sites has still performed depending on experience and intuition of the site manager without systematic process of rational work. Dependency structure matrix (DSM) is useful tool in planning the activity sequences and managing information exchanges unlike other existing tools. To improve lifting plan of T/C efficiently, this study presents a framework for the scheduling T/C using DSM through the case study in real world construction site. The results of case study showed that the scheduling T/C using DSM is useful to optimize the T/C lifting plan in terms of easiness, specially in the typical floor cycle lifting planning.

Structural Performance Investigation for the Reinforced Concrete Frames Deteriorated by the Reinforcement Corrosion (철근부식에 의한 철근콘크리트골조의 구조성능분석)

  • Choi, Se-Woon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.563-570
    • /
    • 2015
  • The existing research on the damage detection method for building structures has considered the damages from the excessive loadings such as the earthquake. However, the structural performance of building structures could be reduced due to the deterioration based on the chloride, carbonation during the long-term time. Thus, to effectively manage the healthiness of structures, the deterioration influences on the structures should be checked. In this study, the corrosion of rebars by the chloride is considered as the deterioration factor. To consider the structural performance reduction of the corroded rebars, the yield strength, cross-sectional area, rupture strain of rebars and the compressive strength of cover concrete based on the corrosion level are estimated. These properties of rebars and cover concrete are used for the procedure to evaluate the structural performance reduction of structural member level and the building level. The moment-curvature analysis is performed to evaluate the structural performance reduction of structural member level. Also, the eigenvalue analysis and the pushover analysis are performed to investigate the natural period and mode shape and the strength and deformation performance of buildings, respectively.

An Experimental Study on the Characteristic of Porous Concrete using different Aggregates (골재의 종류에 따른 포러스콘크리트의 특성에 관한 실험적 연구)

  • Jung, Si-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.1
    • /
    • pp.89-96
    • /
    • 2004
  • Porous concrete is used of various parts by advantage of porous. Example of growing of plant is possible, and dwelling of creature, and filter functions of various contaminant, and decrease of noise, and so on. This research is for porous concretes that were used by four aggregate rubble, refreshing aggregate, expanded clay, orchid stone. This research estimate that physical and mechanical characteristics of fresh concrete and hardened concrete. The purpose of this research is to make environment-friendly porous concrete. This research's conclusion is as following : 1. Porous Concrete's slump was measured 12~14cm with rubble, 12~16cm with refreshing aggregate, 11~13cm with expanded clay, 11~13cm with orchid stone. Weight of aggregate was bigger, slump price appeared by bigger thing. Because placed Porous Concrete is low viscosity and small resistance between aggregate, it estimated that have high workability. 2. Porous Concrete's unit weight was measured 1.71~1.75t/$\textrm{m}^3$ with rubble, 1.58~1.62t/$\textrm{m}^3$ with refreshing aggregate, 1.19~1.20t/$\textrm{m}^3$ with expanded clay, 0.98~1.06t/$\textrm{m}^3$ with orchid stone. Showed aspect such as weight of aggregate. 3. Porous Concrete's compressive strength was measured 76~102kgf/$\textrm{cm}^2$ with rubble, 51~60kgf/$\textrm{cm}^2$ with refreshing aggregate, 30~40kgf/$\textrm{cm}^2$ with expanded clay, 13~16kgf/$\textrm{cm}^2$ with orchid stone. 4. Tendency of tensile strength and bending strength showed generally similarly with compressive strength, but showed low value fewer than 15kgf/$\textrm{cm}^2$ Therefore, wire mesh, reinforcing rod, such as establishment of frame is considered to need in reinforcement about tensility or flexures in case receive tensility or produce product of thin absence form. It concludes by speculating on the consequences of extrapolating the results of study to remodelling the office building being already existence.

Model reduction techniques for high-rise buildings and its reduced-order controller with an improved BT method

  • Chen, Chao-Jun;Teng, Jun;Li, Zuo-Hua;Wu, Qing-Gui;Lin, Bei-Chun
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.305-317
    • /
    • 2021
  • An AMD control system is usually built based on the original model of a target building. As a result, the fact leads a large calculation workload exists. Therefore, the orders of a structural model should be reduced appropriately. Among various model-reduction methods, a suitable reduced-order model is important to high-rise buildings. Meanwhile, a partial structural information is discarded directly in the model-reduction process, which leads to the accuracy reduction of its controller design. In this paper, an optimal technique is selected through comparing several common model-reduction methods. Then, considering the dynamic characteristics of a high-rise building, an improved balanced truncation (BT) method is proposed for establishing its reduced-order model. The abandoned structural information, including natural frequencies, damping ratios and modal information of the original model, is reconsidered. Based on the improved reduced-order model, a new reduced-order controller is designed by a regional pole-placement method. A high-rise building with an AMD system is regarded as an example, in which the energy distribution, the control effects and the control parameters are used as the indexes to analyze the performance of the improved reduced-order controller. To verify its effectiveness, the proposed methodology is also applied to a four-storey experimental frame. The results demonstrate that the new controller has a stable control performance and a relatively short calculation time, which provides good potential for structural vibration control of high-rise buildings.

Investigation into the Effectiveness on Customized Remodeling - Focusing on apartment houses completed during remodeling - (맞춤형 리모델링에 대한 실효성 검증 연구 - 리모델링을 추진중, 완공한 공동주택을 중심으로 -)

  • Yoon, Hyang-Seung;Kim, Gi-Soo
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.7
    • /
    • pp.3-12
    • /
    • 2018
  • The present remodeling makes almost no difference from rebuilding as all the building materials are removed remaining frame structure only. And, in case of vertical extension of building, higher construction cost and safety problem occur. The Ministry of Land, Transport and Maritime Affairs, therefore, recommends customized remodeling that can be made in light of the resident' needs such as parking lot, elevator, bathroom, and room for the alternative of remodeling of vertical extension of building. The purpose of this study is to present real data that can be referred to the constructor's decision making before starting the remodeling, by investigating and analyzing the weight and importance between evaluation factors for customized remodeling at the completed time of remodeling. Accordingly, the factors were divided into environmental factor, social factor, and economical factor, and the survey was performed for the residents living in remodeling houses. In addition, for the professionals, AHP (Analytic Hierarchy Process) has been carried out for the priority in the customized remodeling. For environmental factor, the level of importance made difference from that before remodeling, except parking level. For social factor, every item, including psychological satisfaction and community satisfaction, made difference. For economical factor, the recognition level of importance in rent made difference, except sale price of the factor for price satisfaction. In case of the factor for cost satisfaction, it was checked that construction cost and administration cost both could be considered important. As a result of AHP, the most importantly emphasized item was construction cost, and sale price, administration cost, residence structure, and parking lot were followed by priority in order. This study could contribute to reliably settle down customized remodeling by giving reasonable and substantial help from the analysis of the differences in the customized remodeling items before/after the remodeling.

Reinforced concrete structures with damped seismic buckling-restrained bracing optimization using multi-objective evolutionary niching ChOA

  • Shouhua Liu;Jianfeng Li;Hamidreza Aghajanirefah;Mohammad Khishe;Abbas Khishe;Arsalan Mahmoodzadeh;Banar Fareed Ibrahim
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.147-165
    • /
    • 2023
  • The paper contrasts conventional seismic design with a design that incorporates buckling-restrained bracing in three-dimensional reinforced concrete buildings (BRBs). The suboptimal structures may be found using the multi-objective chimp optimization algorithm (MEN-ChOA). Given the constraints and dimensions, ChOA suffers from a slow convergence rate and tends to become stuck in local minima. Therefore, the ChOA is improved by niching and evolutionary operators to overcome the aforementioned problems. In addition, a new technique is presented to compute seismic and dead loads that include all of a structure's parts in an algorithm for three-dimensional frame design rather than only using structural elements. The performance of the constructed multi-objective model is evaluated using 12 standard multi-objective benchmarks proposed in IEEE congress on evolutionary computation. Second, MEN-ChOA is employed in constructing several reinforced concrete structures by the Mexico City building code. The variety of Pareto optimum fronts of these criteria enables a thorough performance examination of the MEN-ChOA. The results also reveal that BRB frames with comparable structural performance to conventional moment-resistant reinforced concrete framed buildings are more cost-effective when reinforced concrete building height rises. Structural performance and building cost may improve by using a nature-inspired strategy based on MEN-ChOA in structural design work.

A Study on the Characteristic Micro-Climate of Traditional Korean Houses using Computational Fluid Analysis (전산유체해석을 이용한 전통한옥 주변의 미기후 특성에 대한 연구)

  • Park, Min-Woo;You, Jang-Youl;Nam, Byung-Hee;You, Ki-Pyo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.4
    • /
    • pp.15-22
    • /
    • 2022
  • Micro-climate measurements and computational fluid analysis were conducted to use it as basic data for the preservation and management of the old house of Kim Myung-kwan, a traditional building that is National Folk Cultural Property No. 26. As a result of the actual measurement, the temperature and humidity are relatively evenly distributed indoors unlike outdoors, but the temperature and humidity vary depending on the time change and the installation location in the outdoors. It was found that the temperature increases after dawn and the temperature varies depending on the installation position around 14:00-15:00, when the temperature becomes the highest. In particular, the temperature was high at the outdoor measurement point adjacent to the building and the fence. As a result of the computational fluid analysis, the temperature was high in the buildings and fences in the old house or in the area adjacent to the building, and it was about 1℃ higher than the surrounding area. In this area, it is judged that the thickening of wood will occur more severely than in other locations, and special preservation management is required.