• Title/Summary/Keyword: frame building

Search Result 1,103, Processing Time 0.035 seconds

A novel preloading method for foundation underpinning for the remodeling of an existing building

  • Wang, Chengcan;Han, Jin-Tae;Kim, Seokjung;Jang, Young-Eun
    • Geomechanics and Engineering
    • /
    • v.24 no.1
    • /
    • pp.29-42
    • /
    • 2021
  • The utilization of buildings can be improved by extending them vertically. However, the added load of the extension might require building foundations to be underpinned; otherwise, the loads on the foundations might exceed their bearing capacity. In this study, a preloading method was presented aiming at transferring partial loads from existing piles to underpinning piles. A pneumatic-type model preloading device was developed and used to carry out centrifuge experiments to evaluate the load-displacement behavior of piles, the pile-soil interaction during preloading, and the additional loading caused by vertical extension. The results showed that the preloading devices effectively transfer load from existing piles to underpinning piles. In the additional loading test of group piles, the load-sharing ratio of a pile increased with its stiffness. The load-sharing ratio of a preloaded micropile was less than that of a non-preloaded micropile as a result of the reduction in axial stiffness caused by preloading before additional loading. Therefore, a slight reduction of the load-sharing capacity of an underpinning pile should be considered if the preloading method is applied. Further, two full scale preloading devices was developed. The devices preload underpinning piles and thereby produce reaction forces on a reaction frame to jack existing piles upward, thus transferring load from the existing piles to the underpinning piles. Specifically, screw-type and hydraulic-jack type devices were developed for the practical application of foundation underpinning during vertical extension, and their operability and load transfer effect verified via full-scale structural experiments.

Quality Improvement Measures of Modular Public Rental Apartment Houses through Defects Analysis (모듈러 공공주택의 하자분석을 통한 품질 개선 방안)

  • Lee, Soon Guh;Kim, Gyu Yong;Nam, Jeongsoo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.4
    • /
    • pp.425-436
    • /
    • 2024
  • Modular apartment houses are a relatively new approach to public housing in South Korea. While promising in terms of efficiency and potential cost benefits, initial occupancy and maintenance data highlight areas for improvement in quality control. Analysis of defects reported during occupancy and maintenance stages revealed a high prevalence of issues with wallpaper and flooring. This suggests a need for stricter quality control measures during the production and installation of these building components. Furthermore, maintenance data identified shortcomings in the waterproofing methods employed for roofs, as well as in the design and construction management of connections between the low-rise concrete frames and the modular units themselves, including balconies. These findings point towards the importance of meticulous design and rigorous construction management practices to ensure the long-term durability of these critical building elements. Finally, the research suggests that unifying responsibility for construction management by awarding contracts for both the frame and the modular units to a single company could improve overall quality control. This approach could potentially mitigate issues arising from divided responsibility and streamline communication channels. By addressing these quality control concerns, modular construction has the potential to become a more widely adopted and successful method for delivering public housing in South Korea.

Configurations of the Friction Dampers Installed in a Reinforced Concrete Shear Wall-Moment Frame System (철근콘크리트 전단벽-모멘트골조 형식 건물에 대한 마찰형 감쇠기 설치방식 비교연구)

  • Park, Ji-Hun;Kim, Gil-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.53-67
    • /
    • 2008
  • In this study, seismic control performance of friction dampers installed in a reinforced concrete shear wall-moment frame system, of which main lateral force resisting system is a shear wall, is investigated. Three configurations of friction dampers are investigated. One is a diagonal brace type reinforcing the shear wall directly, another is a diagonal brace type reinforcing the moment frame without the shear wall, and the other one is a vertical boundary element type installed at both ends of the shear wall. In addition, various levels of the total friction force and its distribution methods are examined. Time history analysis considering material nonlinearity is conducted for seismic loads increased by the enhanced design code compared to the initial design loads, and energy dissipation, lateral loads and structural member damages are analyzed. As a result, the shear wall-reinforcing diagonal brace type with the total friction force of 30 % of the reference friction force gives the best performance on the whole, and the distribution methods of the friction force do not have remarkable difference in effects. Also, concentrated installation in adjacent four stories shows just a little compromised control performance compared to the entire story installation.

A Case Study on Seismic Response of Haunch Repaired Steel MRFs (헌치로 보강된 철골모멘트골조의 지진응답 사례연구)

  • 이철호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.69-78
    • /
    • 1997
  • Recent test results of steel moment connections repaired with a haunch on the bottom side of the beam have been shown to be a very promising solution to enhancing the seismic performance of steel moment-resisting frames. Yet, litle is known about the effects of using such a repair scheme on the system seismic performance of structures. To investigate the effects of haunch repair on the system seismic performance, a case study was conducted for a 13-story steel frame building damaged during the 1994 Northridge earthquake. When haunches are incorporated in a steel moment frame, the response prediction is complicated by the presence of "dual" panel zones in the column. A new analytical modeling technique for the dual panel zone recently developed by the author was incorporated in the analysis. Incorporating the behavior of dual panel zone was among the most significant consideration in the analyses. Both the inelastic static and dynamic analyses did not indicate detrimental side effects resulting from the repair.he repair.

  • PDF

Survey Research on Thermal Situation of Office Buildings (사무소 건축물의 단열상황에 관한 조사연구)

  • Jung, Ui In;Kim, Bong Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.145-152
    • /
    • 2013
  • This study is to evaluate the thermal insulation of the curtain wall of the buildings constructed since the 1990s to the buildings currently under construction in 2011 and to provide the basic data for repairing and reinforcing and designing the thermal insulation. To this effect, the temperature difference by part was analyzed through measuring the inside and outside surface temperature of the curtain wall of the office building, and thereafter, the conditions of the thermal insulation and the thermal bridge part were examined. The result of the study is as follows; Not only in the winter season when the temperature difference between the indoor-outdoor is over $20^{\circ}C$, but also in the summer season when there is a small temperature difference, the temperature difference between the inside and outside of the frame is $2^{\circ}C{\sim}4^{\circ}C$ equally. Under such conditions as stated above, the thermal bridge occurred, which resulted from the heat flow of the steel frame part (mullion, transom), and therefore, the reinforcement of the thermal insulation is considered to be needed.

A Study on the Risk Rate of Work Type According to the Fatal Accident Cases and the Work Strength in Construction Work (중대재해사례와 직업강도를 고려한 건축공사 위험성 평가)

  • Lee, Jong-Bin;Go, Seong-Seok;Jang, Seong-Rok
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.102-107
    • /
    • 2006
  • Construction accidents have not decreased in spite of much effort such as new work methods, education and research related to safety works. Specially, many fatal accidents happened in construction works which involve the apartment, building, school, church, hotel, hospital, bank work and the other works. These accidents are mainly caused by unanticipated risk factors. From these reasons, this study researched fatal accidents which happened in construction works during last 13 years($1992{\sim}2004$) and analyzed the input workers and a work period of construction work. According to the input workers and a work period, the results are as following. During 13years($1992{\sim}2004$), the fatal accidents, related to the construction work, were happened to the 1,977 cases. These results were occupied the 21.32% of the total industry accidents. According to the result of the construction, the fatal accident rate of a concrete form work was the highest rate of 16.24% (321 cases) and a temporary work, a steel frame work was the each rate of 12.39%(245 cases), 10.07%(199 cases). Comparing to other work types, the fatal accident rate of those three work types(concrete form work, temporary work, steel work) was represented highly. We surveyed input workers and work period of construction work site. From the result of survey, input workers of a concrete form work were occupied with 13,720. The risk rate of the work type, which was considered input workers and work period, was represented 0.3622(a steel frame work), 0.1142(a temporary work), 0.0782(a tower crane) and 0.0772(a concrete work).

Shaking table test of pounding tuned mass damper (PTMD) on a frame structure under earthquake excitation

  • Lin, Wei;Wang, Qiuzhang;Li, Jun;Chen, Shanghong;Qi, Ai
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.545-553
    • /
    • 2017
  • A pounding tuned mass damper (PTMD) can be considered as a passive device, which combines the merits of a traditional tuned mass damper (TMD) and a collision damper. A recent analytical study by the authors demonstrated that the PTMD base on the energy dissipation during impact is able to achieve better control effectiveness over the traditional TMD. In this paper, a PTMD prototype is manufactured and applied for seismic response reduction to examine its efficacy. A series of shaking table tests is conducted in a three-story building frame model under single-dimensional and two-dimensional broadband earthquake excitations with different excitation intensities. The ability of the PTMD to reduce the structural responses is experimentally investigated. The results show that the traditional TMD is sensitive to input excitations, while the PTMD mostly has improved control performance over the TMD to remarkably reduce both the peak and root-mean-square (RMS) structural responses under single-dimensional earthquake excitation. Unlike the TMD, the PTMD is found to have the merit of maintaining a stable performance when subjected to different earthquake loadings. In addition, it is also indicated that the performance of the PTMD can be enhanced by adjusting the initial gap value, and the control effectiveness improves with the increasing excitation intensity. Under two-dimensional earthquake inputs, the PTMD controls remain outperform the TMD controls; however, the oscillation of the added mass is observed during the test, which may induce torsional vibration modes of the structure, and hence, result in poor control performance especially after a strong earthquake period.

Seismic Performance Evaluation of Medium-and Low-rise R/C Buildings Strengthened with RCSF External Connection Method by Pseudo Dynamic Test (유사동적실험에 의한 RCSF 외부접합공법으로 내진보강 된 중·저층 철근콘크리트 건물의 내진성능 평가)

  • Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.13-22
    • /
    • 2015
  • In this study, a new RCSF (Reinforced Concrete Steel Frame) external connection method is proposed for seismic strengthening of medium-and low-rise reinforced concrete buildings. The RCSF method, proposed in this study, is capable of carrying out the seismic retrofitting construction while residents can live inside structures. The method is one of the strength design approach by retrofit which can easily increase the ultimate lateral load capacity of concrete buildings controlled by shear. The pseudo-dynamic test, designed using a existing school building in Korea, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and ductility. Test results revealed that the proposed RCSF strengthening method installed in RC frame enhanced conspicuously the strength and displacement capacities, and the method can resist markedly under the large scaled earthquake intensity level.

Development of Vermiculite Board to Secure the Fire Resistance Performance of Light-Frame Wood Structural Wall (경골목구조 벽체의 내화성능확보를 위한 질석보드 개발)

  • Yoo, Seok Hyung;Cheong, Chang Heon
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.40-45
    • /
    • 2018
  • It is considered that vermiculite as an inorganic material is highly effective when it is used as a building finishing material because it is eco-friendly. Vermiculite has excellent properties such as fire resistance, heat insulation, sound absorption as well as prevention of condensation, deodorization and aesthetics. In this study, we developed a finishing board with vermiculite as its main material and mixed with mineral loose wool (VB-L) or mineral powder (VB-P), and conducted fireproof test and insulation test. In addition, fire resistance tests were carried out by applying the two developed vermiculite boards as finishing materials for the standard wall details of light frame wood structures (KS F 1611-1). As a result of the fire resistance test, the VB-L specimen showed better fire resistance than the VB-P specimen. Both vermiculite boards showed sufficient fire resistance performance of 2 hours for a thickness of 30 mm.

Earthquake Response of Mid-rise to High-rise Buildings with Friction Dampers

  • Kaur, Naveet;Matsagar, V.A.;Nagpal, A.K.
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.4
    • /
    • pp.311-332
    • /
    • 2012
  • Earthquake response of mid-rise to high-rise buildings provided with friction dampers is investigated. The steel buildings are modelled as shear-type structures and the investigation involved modelling of the structures of varying heights ranging from five storeys to twenty storeys, in steps of five storeys, subjected to real earthquake ground motions. Three basic types of structures considered in the study are: moment resisting frame (MRF), braced frame (BF), and friction damper frame (FDF). Mathematical modelling of the friction dampers involved simulation of the two distinct phases namely, the stick phase and the slip phase. Dynamic time history analyses are carried out to study the variation of the top floor acceleration, top floor displacement, storey shear, and base-shear. Further, energy plots are obtained to investigate the energy dissipation by the friction dampers. It is seen that substantial earthquake response reduction is achieved with the provision of the friction dampers in the mid-rise and high-rise buildings. The provision of the friction dampers always reduces the base-shear. It is also seen from the fast Fourier transform (FFT) of the top floor acceleration that there is substantial reduction in the peak response; however, the higher frequency content in the response has increased. For the structures considered, the top floor displacements are lesser in the FDF than in the MRF; however, the top floor displacements are marginally larger in the FDF than in the BF.