• 제목/요약/키워드: frame building

검색결과 1,091건 처리시간 0.023초

Anchored blind bolted composite connection to a concrete filled steel tubular column

  • Agheshlui, Hossein;Goldsworthy, Helen;Gad, Emad;Mirza, Olivia
    • Steel and Composite Structures
    • /
    • 제23권1호
    • /
    • pp.115-130
    • /
    • 2017
  • A new type of moment-resisting bolted connection was developed for use in composite steel- concrete construction to connect composite open section steel beams to concrete filled steel square tubular columns. The connection was made possible using anchored blind bolts along with two through bolts. It was designed to act compositely with the in-situ reinforced concrete slab to achieve an enhanced stiffness and strength. The developed connection was incorporated in the design of a medium rise (five storey) commercial building which was located in low to medium seismicity regions. The lateral load resisting system for the design building consisted of moment resisting frames in two directions. A major full scale test on a sub-assembly of a perimeter moment-resisting frame of the model building was conducted to study the system behaviour incorporating the proposed connection. The behaviour of the proposed connection and its interaction with the floor slab under cyclic loading representing the earthquake events with return periods of 500 years and 2500 years was investigated. The proposed connection was categorized as semi rigid for unbraced frames based on the classification method presented in Eurocode 3. Furthermore, the proposed connection, composite with the floor slab, successfully provided adequate lateral load resistance for the model building.

Static vulnerability of existing R.C. buildings in Italy: a case study

  • Maria, Polese;Gerardo M., Verderame;Gaetano, Manfredi
    • Structural Engineering and Mechanics
    • /
    • 제39권4호
    • /
    • pp.599-620
    • /
    • 2011
  • The investigation on possible causes of failures related to documented collapses is a complicated issue, primarily due to the scarcity and inadequacy of information available. Although several studies have tried to understand which are the inherent structural deficiencies or circumstances associated to failure of the main structural elements in a reinforced concrete frame, to the authors knowledge a uniform approach for the evaluation building static vulnerability, does not exist yet. This paper investigates, by means of a detailed case study, the potential failure mechanisms of an existing reinforced concrete building. The linear elastic analysis for the three-dimensional building model gives an insight on the working conditions of the structural elements, demonstrating the relevance of a number of structural faults that could sensibly lower the structure's safety margin. Next, the building's bearing capacity is studied by means of parametric nonlinear analysis performed at the element's level. It is seen that, depending on material properties, concrete strength and steel yield stress, the failure hierarchy could be dominated by either brittle or ductile mechanisms.

2016년 경주지진에 의한 중층 RC 건물의 내진 성능 평가 (Seismic Performance Assessment of a Mid-Rise RC Building subjected to 2016 Gyeongju Earthquake)

  • 이도형;전종수
    • 한국지진공학회논문집
    • /
    • 제20권7_spc호
    • /
    • pp.473-483
    • /
    • 2016
  • In this paper, seismic performance assessment has been examined for a mid-rise RC building subjected to 2016 Gyeongju earthquake occurred in Korea. For the purpose of the paper, 2D external and internal frames in each direction of the building have been employed in the present comparative analyses. Nonlinear static pushover analyses have been conducted to estimate frame capacities. Nonlinear dynamic time-history analyses have also been carried out to examine demands for the frames subjected to ground motions recorded at stations in near of Gyeongju and a previous earthquake ground motion. Analytical predictions demonstrate that maximum demands are significantly affected by characteristics of both spectral acceleration response and spectrum intensity over a wide range of periods. Further damage potential of the frames has been evaluated in terms of fragility analyses using the same ground motions. Fragility results reveal that the ground motion characteristics of the Gyeongju earthquake have little influence on the seismic demand and fragility of frames.

GIS와 실영상을 이용한 지리 모델링 시스템 (A Geographic Modeling System Using GIS and Real Images)

  • 안현식
    • Spatial Information Research
    • /
    • 제12권2호
    • /
    • pp.137-149
    • /
    • 2004
  • 지금까지 3차원 지리 공간 구성을 위해서는 2D 지리 데이터로부터 수작업으로 건물의 프레임을 만들고 단면 영상을 붙여서 건물을 모델링하였다. 본 논문에서는 지도 데이터의 표준으로 사용되고 있는 수치지도와 임의의 위치에서 입력된 건물의 영상을 이용하여 3D 지리공간을 자동으로 구성하는 지리 모델링 시스템을 제안한다. 먼저 OpenGL을 이용하여 가상공간에 지형을 TIN과 DEM 방법으로 형상화한다. 건물을 모델링하기 위해 임의의 위치에서 카메라로 입력한 건물 영상으로부터 건물의 단면 영상을 추출하고, 검출된 수직선으로부터 카메라의 위치를 자동으로 추정하고, 건물의 높이를 계산하고, 얻어진 단면영상과 texture 맵핑을 하여 실제 공간에 가까운 3D 지리공간을 자동적으로 구성한다. 제안한 방법을 실제 지역에 적용하여 제안한 지리 모델링 시스템의 효율성을 보인다.

  • PDF

Progressive collapse vulnerability in 6-Story RC symmetric and asymmetric buildings under earthquake loads

  • Karimiyan, Somayyeh;Kashan, Ali Husseinzadeh;Karimiyan, Morteza
    • Earthquakes and Structures
    • /
    • 제6권5호
    • /
    • pp.473-494
    • /
    • 2014
  • Progressive collapse, which is referred to as the collapse of the entire building under local damages, is a common failure mode happened by earthquakes. The collapse process highly depends on the whole structural system. Since, asymmetry of the building plan leads to the local damage concentration; it may intensify the progressive collapse mechanism of asymmetric buildings. In this research the progressive collapse of regular and irregular 6-story RC ordinary moment resisting frame buildings are studied in the presence of the earthquake loads. Collapse process and collapse propagation are investigated using nonlinear time history analyses (NLTHA) in buildings with 5%, 15% and 25% mass asymmetry with respect to the number of collapsed hinges and story drifts criteria. Results show that increasing the value of mass eccentricity makes the asymmetric buildings become unstable earlier and in the early stages with lower number of the collapsed hinges. So, with increasing the mass eccentricity in building, instability and collapse of the entire building occurs earlier, with lower potential of the progressive collapse. It is also demonstrated that with increasing the mass asymmetry the decreasing trend of the number of collapsed beam and column hinges is approximately similar to the decreasing trend in the average story drifts of the mass centers and stiff edges. So, as an alternative to a much difficult-to-calculate local response parameter of the number of collapsed hinges, the story drift, as a global response parameter, measures the potential of progressive collapse more easily.

건물 사이에 풍력발전기를 설치하기 위한 기류특성분석 (Analysis of Air Current Characteristics for Installing Wind Turbines Between Buildings)

  • 박민우;유장열;손영무;유기표
    • 한국공간구조학회논문집
    • /
    • 제18권1호
    • /
    • pp.117-125
    • /
    • 2018
  • Recently, various building integrated wind power (BIWP) approaches have been used to produce energy by installing wind power generators in high-rise buildings constructed in urban areas. BIWP has advantages in that it does not require support to position the turbine up to the installation height, and the energy produced by the wind turbine can be applied directly to the building. The accurate evaluation of wind speed is important in urban wind power generation. In this study, a wind tunnel test and computational fluid dynamics (CFD) analysis were conducted to evaluate the wind speed for installing wind turbines between buildings. The analysis results showed that the longer the length of the buildings, which had the same height, the larger the wind speed between the two buildings. Furthermore, the narrower the building's width, the higher the wind velocity; these outcomes are due to the increase in the Venturi effect. In addition, the correlation coefficient between the results of the wind tunnel test and the CFD analysis was higher than 0.8, which is a very high value.

연속지진에 대한 지진 취약 철근콘크리트 건축물의 FRP 재킷 보수 전략 연구 (Repair Scheme of FRP Column Jacketing System for Seismically-vulnerable RC Buildings under Successive Earthquakes)

  • 김수빈;김혜원;박재은;신지욱
    • 한국공간구조학회논문집
    • /
    • 제23권2호
    • /
    • pp.79-90
    • /
    • 2023
  • Existing reinforced concrete (RC) frame buildings have seismic vulnerabilities because of seismically deficient details. In particular, since cumulative damage caused by successive earthquakes causes serious damage, repair/retrofit rehabilitation studies for successive earthquakes are needed. This study investigates the repair effect of fiber-reinforced polymer jacketing system for the seismically-vulnerable building structures under successive earthquakes. The repair modeling method developed and validated from the previous study was implemented to the building models. Additionally, the main parameters of the FRP jacketing system were selected as the number of FRP layers associated with the confinement effects and the installation location. To define the repair effects of the FRP jacketing system with the main parameters, this study conducted nonlinear time-history analyses for the building structural models with the various repairing scenarios. Based on this investigation, the repair effects of the damaged building structures were significantly affected by the damage levels induced from the mainshocks regardless of the retrofit scenarios.

A design procedure of dissipative braces for seismic upgrading structures

  • Bergami, A.V.;Nuti, C.
    • Earthquakes and Structures
    • /
    • 제4권1호
    • /
    • pp.85-108
    • /
    • 2013
  • The research presented in this paper deals with the seismic protection of existing frame structures by means of passive energy dissipation. A displacement-based procedure to design dissipative bracings for the seismic protection of frame structures is proposed and some applications are discussed. The procedure is based on the displacement based design using the capacity spectrum method, no dynamic non linear analyses are needed. Two performance objective have been considered developing the procedure: protect the structure against structural damage or collapse and avoid non-structural damage as well as excessive base shear. The compliance is obtained dimensioning dissipative braces to limit global displacements and interstorey drifts. Reference is made to BRB braces, but the procedure can easily be extended to any typology of dissipative brace. The procedure has been validated through a comparison with nonlinear dynamic response of two 2D r.c. frames, one bare and one infilled. Finally a real application, on an existing 3D building where dissipative braces available on market are used, is discussed.

내진보강을 위한 피봇형 변위 증폭 감쇠 시스템의 성능 평가 (Performance Evaluation of a Pivot-Type Displacement Amplification Damper System for Seismic Strengthening)

  • 박장호;안성찬;박관순
    • 한국안전학회지
    • /
    • 제27권1호
    • /
    • pp.70-75
    • /
    • 2012
  • For the vibration control of earthquake-excited structures, a pivot-type displacement amplification damper system is proposed and its validity is investigated in this study. A rotational frame amplifies the stroke of the proposed damper system and it can absorb more vibrational energy compared to the conventional dampers of which strokes are not large. In order to prove the effectiveness of the system, time-history analyses are performed with a three story building modelled by a three dimensional frame and numerical results are compared with those for a conventional V-shape braced damper system. In addition, the seismic performances are investigated according to the changes of damper capacity and location.

Failure analysis of reinforced concrete frames with short column effect

  • Caglar, Naci;Mutlu, Mahir
    • Computers and Concrete
    • /
    • 제6권5호
    • /
    • pp.403-419
    • /
    • 2009
  • Short column effect is cause to failure of columns which may result in severe damages or even collapse during earthquakes. The scope of the study is mainly to reveal the effect of short column on the holistic behaviour of the buildings. The nonlinear analysis of 31 different frame buildings containing short column problem are carried out using finite element method. The finite element models were selected by 2 bays and 3 stories. Since the short columns are generally seen in the first storey of the buildings, in the study, they are only constructed in the same storey. The adverse effect of the short column on the response of buildings was shown in terms of the total load factor and displacement capacity of building. The response of buildings in terms of ground storey displacements is presented in figures and discussed. It is revealed that if the window openings are constructed along the bays, the total load capacity is decreased 85% compared with reference model in which all of bays are filled with infill walls.